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1. POLYNOMIAL CONGRUENCES

1.1. Setting and examples

Consider the classical problem of counting the number of solutions of polyno-
mial congruences. More specifically, fix a polynomial f ∈ Z[x1, . . . , xn]. Given a
positive integer m, we are interested in the number of solutions of f mod m, that
is, in the cardinality of the set {a ∈ (Z/mZ)

n | f(a) ≡ 0 mod m} = {a ∈ (Z/mZ)
n |

f(a) = 0 in Z/mZ}. By the Chinese Remainder Theorem, it suffices to investigate
the cases where m is a prime power.

The authors are partially supported by the Research Foundation Flanders (FWO) project

G.0792.18.
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Theorem 1.1 (Chinese Remainder Theorem). Let m =
∏r
j=1 p

kj
j be the de-

composition of m as product of primes (where all pj are different).

(1) The map

Z
mZ

∼=−→
r∏
j=1

Z
p
kj
j Z

: x mod m 7→ (x mod pk11 , . . . , x mod pkrr )

is an isomorphism of rings.
(2) Under the induced isomorphism(

Z
mZ

)n ∼=−→ r∏
j=1

(
Z

p
kj
j Z

)n

the set {a ∈ (Z/mZ)
n | f(a) ≡ 0 mod m} is mapped to

∏r
j=1{aj ∈

(
Z/pkjj Z

)n |
f(aj) ≡ 0 mod p

kj
j }.

Given a prime number p, define

Mi = Mi(p) := ]

{
a ∈

(
Z
piZ

)n
| f(a) ≡ 0 mod pi

}
for i ∈ Z≥0 (where M0 = 1). We want to study these values, especially how they
vary with i.

From now on, we assume p to be a fixed prime number. All values of Mi are
with respect to this prime number p.

Example 1.2. Let f = y − x2 ∈ Z[x, y]. It is not hard to see that Mi = pi for
all i ≥ 0.

Example 1.3. Let f = xy ∈ Z[x, y]. We claim that Mi = (i+ 1)pi− ipi−1. To
see this, we consider the following table which contains all solutions exactly once.1

x y number of solutions

x = 0 y is free 1 · pi

x 6= 0 but pi−1 | x p | y (p− 1) · pi−1

pi−1 - x but pi−2 | x p2 | y (p2 − p) · pi−2

...
...

...

p2 - x but p | x pi−1 | y (pi−1 − pi−2) · p

p - x y = 0 (pi − pi−1) · 1

Summing all values in the last column yields the stated result.

1Read the table as follows. We make a case distinction for x. Next, we count for each value
of x the values of y for which x · y ≡ 0 mod pi.
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Example 1.4. Let f = y2 − x3 ∈ Z[x, y]. It is not hard to see that M1 = p
(consider the parametrization t 7→ (t2, t3), valid over any field). The next values,
less ‘uniform in i’ than in the previous examples, are as follows.

M2 = p(2p− 1) M6 = p5(p2 + p− 1) M8 = p7(2p2 − 1)

M3 = p2(2p− 1) M7 = p6(p2 + p− 1) M9 = p8(2p2 − 1)

M4 = p3(2p− 1) M10 = p9(2p2 − 1)

M5 = p4(2p− 1) M11 = p10(2p2 − 1)

Exercise 1.5. Let f = x2+y2 ∈ Z[x, y]. Compute the value of Mi for all i ≥ 0.
Hint: make a distinction between the cases p = 2, p ≡ 1 mod 4 and p ≡ 3 mod 4.
In which cases is −1 a square mod p?

Remark 1.6. In general, it is hard to compute the Mi by hand. Moreover, the
examples above are somewhat misleading in the sense that their Mi(p) for fixed i are
‘uniform’ in p, even of polynomial form. Examples as f = y2−x(x−1)(x−λ) with
λ 6= 0, 1 and p 6= 2 (elliptic curves) already exhibit a more complicated behaviour:
here M1 is of the form p− 2

√
p cos θ(p), where θ(p) depends in a complicated way

on p.

Question 1.7. Is there in general some structure in the values Mi for varying
i? Does it suffice to know finitely many such values in order to know all of them?

A partial answer (in easy situations) to Question 1.7 is given by Hensel’s
Lemma.

Lemma 1.8 (Hensel’s Lemma). Let f ∈ Z[x1, . . . , xn].

(1) Let a ∈ Zn such that f(a) ≡ 0 mod p. If there exists j ∈ {1, . . . , n} such

that ∂f
∂xj

(a) 6≡ 0 mod p, then

]

{
x ∈

(
Z
piZ

)n
| f(x) ≡ 0 mod pi and x ≡ a mod p

}
= p(i−1)(n−1).

(2) Hence, if all a ∈ Zn for which f(a) ≡ 0 mod p have this property, then
Mi = M1 · p(i−1)(n−1). In particular, all Mi are then determined by M1.

Remark 1.9. Example 1.2 is an illustration of Hensel’s Lemma.

1.2. Poincaré series

A typical way to encode and study a countable set of numbers is via their
generating series.

Definition 1.10. The Poincaré series Pp(f, T ) is defined as (a slight adapta-
tion of) the generating series of the values Mi, that is,

P (T ) = Pp(f, T ) :=
∑
i≥0

Mi(p
−nT )i =

∑
i≥0

Mi

pni
T i.

The factors pni are the cardinalities of the sets (Z/piZ)
n
. So, more precisely, the

series P (T ) is the generating series of the ‘counting measure’ of the sets {a ∈
(Z/piZ)

n | f(a) ≡ 0 mod pi}. This interpretation will pop up naturally in the link
with the Igusa zeta function.
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Example 1.11. Recall Examples 1.2, 1.3 and 1.4.

(1) For f = y − x2, we have

P (T ) =
∑
i≥0

Mi

p2i
T i =

∑
i≥0

1

pi
T i =

p

p− T
.

More generally, it is easy to compute the Poincaré series when we can
apply Hensel’s Lemma. Indeed, in that case Mi = M1 ·p(i−1)(n−1) and we
obtain

P (T ) =
∑
i≥0

M1 · p(i−1)(n−1)(p−nT )i = M1 ·
∑
i≥0

p−i−n+1T i =
M1

pn−1
· p

p− T
.

(2) For f = xy, one computes P (T ) = p2−T
(p−T )2 .

(3) For f = y2 − x3, we claim that P (T ) = p6+(p4−p3)T 2−T 6

(p−T )(p5−T 6) . This will be

discussed later (in Exercise 4.12).

Conjecture 1.12 (Borewicz-Šafarevič, 1966 [BS]). The Poincaré series P (T )
is a rational function in T .

1.3. Relation with p-adics

Igusa proved the conjecture above in 1975 [Ig1]. His strategy was relating
P (T ) to a p-adic integral and to use change of variables (geometrically given by a
resolution of singularities) to study this integral. As a consequence, Question 1.7
has a positive answer!

Remark 1.13. The rings Z/piZ in the polynomial congruences introduced above
have a natural link with the ring of p-adic integers Zp (and its fraction field Qp);
indeed, Zp = lim←−

Z/piZ via the natural projections

Z
pi+1Z

→ Z
piZ

: a0 + a1p+ · · ·+ ai−1p
i−1 + aip

i 7→ a0 + a1p+ · · ·+ ai−1p
i−1,

where all a` ∈ {0, . . . , p− 1}, inducing also the projections

Zp
π−→ Zp
piZp

∼=
Z
piZ

and Znp
πn−−→

(
Zp
piZp

)n
∼=
(

Z
piZ

)n
.

Notation 1.14. In the subsequent sections we denote by ordp(·) and | · |p =

p−ordp(·) the p-order and the standard p-adic norm on Qp, respectively. That is,
writing z ∈ Qp, z 6= 0, as z = pku with k ∈ Z and u a unit in Zp, we have

ordp(z) = k and |z|p = p−ordp(z) = p−k. Furthermore, ordp(0) = +∞ and |0|p = 0.
Also, |dx| = |dx1dx2 . . . dxn| denotes the Haar measure on Qnp , normalized such
that |dx|(Znp ) = 1.

Remark 1.15. Consider C ⊆ (Zp/piZp)
n ∼= (Z/piZ)

n
. The inverse image π−1n (C)

lives in Znp and is called a cylindrical set or cylinder. Then

|dx|(π−1n (C)) =
]C

pin
.

Indeed, taking for each ā ∈ C a fixed representative a ∈ Znp , the set π−1n (C) is the

disjoint union of the sets a+ (piZp)n, ā ∈ C, all with measure p−in.
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2. p-ADIC IGUSA (LOCAL) ZETA FUNCTIONS

2.1. Definition and examples

Definition 2.1. Consider f ∈ Qp[x1, . . . , xn] and s ∈ C with <(s) > 0. The
Igusa zeta function of f is defined as

Z(s) = Zp(f ; s) :=

∫
Znp
|f(x)|sp |dx|.

More generally, one can integrate over ‘balls’ c + (peZp)n or c + (
∏n
i=1 p

eiZp) for
some c ∈ Qnp , or even consider ∫

Qnp
ϕ(x)|f(x)|sp |dx|,

where ϕ is a test function, i.e., a locally constant function with compact support.
Observe that Z(s) is in fact this last integral with ϕ equal to the characteristic
function of Znp .

Remark 2.2. Write s = a+ bi with a, b ∈ R. Then

Z(s) =

∫
Znp
|f(x)|ap |f(x)|bip |dx|.

Observe that |f(x)|bip has modulus 1. Moreover, since f is a continuous function
and Znp is compact, |f(x)|ap is bounded for a > 0. Hence, Z(s) is indeed well-defined
if <(s) > 0.

At this point, it is also not difficult to show that Z(s) is a holomorphic function
in the domain <(s) > 0. We will prove a stronger result in Theorem 3.7.

Remark 2.3. The terminology in the literature is sometimes confusing. One
uses the adjectives p-adic, Igusa and/or local in all possible combinations to indicate
the zeta function Z(s). Here ‘local’ refers to the fact that Qp is a local field.

However, when it is clear that one works in the p-adic setting, the term local
zeta function could also mean the integral

∫
(pZp)n |f(x)|sp |dx| (or, more generally,∫

(peZp)n |f(x)|sp |dx| with e ≥ 1), where now ‘local’ refers to the fact that the inte-

gration domain is a smaller neighbourhood of the origin.

Remark 2.4. In the sequel we will also consider such integrals for some s ∈ C
with <(s) ≤ 0. Strictly speaking, we then integrate over {x ∈ Znp | f(x) 6= 0}. But,
since the excluded set {x ∈ Znp | f(x) = 0} has measure zero, we keep notation as
before.

The following example shows that this integral might be ill-defined if <(s) ≤ 0.

Example 2.5. Let f = x ∈ Qp[x] and s = −1 ∈ C. In order to compute∫
Zp |x|

−1|dx|, we consider the partition

Zp \ {0} = {x ∈ Qp | ∃l ≥ 0 such that |x|p = p−l}

=
⊔
l≥0

{x ∈ Qp | |x|p = p−l}.

Denote {x ∈ Qp | |x|p = p−l} by Al and observe that

|dx|(Al) = |dx|
(
{x ∈ Qp | |x|p ≤ p−l} \ {x ∈ Qp | |x|p ≤ p−l−1}

)
= p−l − p−l−1.
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Therefore, since {0} has measure zero, we have∫
Zp
|x|−1p |dx| =

∑
l≥0

∫
Al

|x|−1p |dx| =
∑
l≥0

∫
Al

pl |dx| =
∑
l≥0

pl
∫
Al

|dx|

=
∑
l≥0

pl(p−l − p−l−1) =
∑
l≥0

(1− p−1) = +∞.

Exercise 2.6. On the other hand, Z(s) can be well defined in a larger half-
plane than <(s) > 0. Verify the following basic examples; they will be important
later on.

(1)
∫
Zp |x|

s
p |dx| =

1−p−1

1−p−(s+1) when <(s) > −1.

(2) More generally,
∫
peZp |x|

s
p |dx| =

(1−p−1)p−e(s+1)

1−p−(s+1) when <(s) > −1.

(3) And still more generally (for positive integers N and ν),∫
peZp
|x|Ns+ν−1p |dx| = (1− p−1)p−e(Ns+ν)

1− p−(Ns+ν)

when <(s) > − ν
N .

Remark 2.7. We have

Z(s) = Zp(f ; s) =

∫
Znp
|f(x)|sp |dx| =

∫
Znp

(
p−ordp(f(x))

)s
|dx|

=

∫
Znp
p−s·ordp(f(x))|dx| =

∫
Znp

(
p−s
)ordp(f(x)) |dx|.

Hence, the Igusa zeta function Z(s) is actually a function of p−s. From now on we
will write t = p−s and Z ′(t) = Z ′(p−s) := Z(s). The change of coordinates is given
by the map ψ : C→ C∗ : s 7→ t = p−s.

Fundamental Domain•
•

1

2πi
ln p

ψ •

•

1

i

The relations between the parameters s and t are given in the following table.
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parameter s parameter t = ψ(s) = p−s

<(s) > 0 0 < |ψ(s)| < 1

<(s) = 0 |ψ(s)| = 1

<(s) < 0 |ψ(s)| > 1

s− s′ ∈ 2πi
ln pZ ψ(s) = ψ(s′)

2.2. Link with Poincaré series

Proposition 2.8. Let f ∈ Zp[x1, . . . , xn]. Consider its Poincaré series P (T )
as given in Definition 1.10. Then

Z(s) =
(p−s − 1)P (p−s) + 1

p−s

or, equivalently,

P (t) =
tZ ′(t)− 1

t− 1
.

Proof. Rewrite the Igusa zeta function in the following way:

Z(s) =

∫
Znp
|f(x)|sp |dx| =

∑
l≥0

∫
ordpf(x)=l

p−ls|dx| =
∑
l≥0

p−ls
∫
ordpf(x)=l

|dx|

=
∑
l≥0

p−ls
(
|dx|({x ∈ Znp | ordpf(x) ≥ l})− |dx|({x ∈ Znp | ordpf(x) ≥ l + 1})

)
.

Recall the projection (see Remark 1.13)

Znp
πn−−→

(
Z
plZ

)n
: x 7→ x mod pl

and observe that {x ∈ Znp | ordp(f(x)) ≥ l} = π−1n ({x ∈ (Z/plZ)
n | f(x) ≡

0 mod pl}). By Remark 1.15 we see that

|dx|
(
π−1n

({
x ∈

(
Z
plZ

)n
| f(x) ≡ 0 mod pl

}))
=
Ml

pln
.

Hence

Z(s) =
∑
l≥0

p−ls
(
Ml

pln
− Ml+1

p(l+1)n

)
=
∑
l≥0

p−ls−lnMl −
∑
l≥0

p−ls−(l+1)nMl+1

=
∑
l≥0

(
p−sp−n

)l
Ml −

∑
l≥1

p−(l−1)s−lnMl = P (p−s)− ps
∑
l≥1

(
p−sp−n

)l
Ml

= P (p−s)− ps(P (p−s)− 1) =
(p−s − 1)P (p−s) + 1

p−s
.

The other equality follows immediately. �
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2.3. Igusa’s Stationary Phase Formula

A possible strategy to compute p-adic integrals –which can be practical or
(in)famously hard– is Igusa’s Stationary Phase Formula. The starting point of this
formula is the obvious equality∫

Znp
|f(x)|sp |dx| =

∑
a∈(Z/pZ)n

∫
a+(pZp)n

|f(x)|sp |dx|,(2.1)

where we use the same notation for a ∈ (Z/pZ)n and a chosen representative a ∈ Znp .

We denote
∫
a+(pZp)n |f(x)|sp |dx| by Ia. We partition the values of a as follows:

(1) a such that f(a) 6≡ 0 mod p,
(2) a such that f(a) ≡ 0 mod p and there exists j ∈ {1, . . . , n} such that

∂f
∂xj

(a) 6≡ 0 mod p,

(3) a such that f(a) ≡ 0 mod p and for all j ∈ {1, . . . , n} : ∂f
∂xj

(a) ≡ 0 mod p.

The first two cases are easy to compute:

(1) Ia =
∫
a+(pZp)n 1s|dx| = |dx| (a+ (pZp)n) = p−n,

(2) Ia =

∫
a+(pZp)n

|f(x)|sp |dx|

=
∑
l≥0

p−ls|dx| ({x ∈ a+ (pZp)n | ordpf(x) = l})

=
∑
l≥1

p−ls|dx| ({x ∈ a+ (pZp)n | ordpf(x) = l})

=
∑
l≥1

p−ls
(
Ml

pln
− Ml+1

p(l+1)n

)

=
∑
l≥1

p−ls
(
p(n−1)(l−1)

pln
− p(n−1)l

p(l+1)n

)
= (p− 1)p−n

∑
l≥1

(
p−s−1

)l
= (p− 1)p−n

p−s−1

1− p−s−1
.

For the fourth equality, we used a result that is explained in the proof of
Proposition 2.8, and for the fifth one, we used Hensel’s Lemma (Lemma
1.8).

Theorem 2.9 (Igusa’s Stationary Phase Formula, 1994 [Ig3]). Define

V :=

{
a ∈

(
Z
pZ

)n
| f(a) ≡ 0 mod p

}
,

S :=

{
a ∈ V | ∂f

∂xj
(a) ≡ 0 mod p for all j ∈ {1, . . . , n}

}
.

Then

Z(s) =
pn − ]V
pn

+ (]V − ]S)
p− 1

pn
p−s−1

1− p−s−1
+
∑
a∈S

∫
a+(pZp)n

|f(x)|sp |dx|.
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Proof. Use equation (2.1) and split the sum according to the three cases
discussed above. Next, use the previous computations for the cases (1) and (2).
This yields the formula. �

Example 2.10. We compute the integral I :=
∫
Z3
p
|xy−z2|sp |dxdydz| (for p 6= 2)

using Theorem 2.9. First, remark that ]V = p2. Indeed, if x = 0, then y is free
and z = 0. If x 6= 0, then y = x−1z2 and hence x is free (non-zero), z is free and y
is fixed. Therefore, ]V = 1 · p · 1 + (p − 1) · 1 · p = p2. Remark that ]S = 1 since
S = {(0, 0, 0)}. Using Igusa’s Stationary Phase Formula, we have

I =
p3 − p2

p3
+ (p2 − 1)

p− 1

p3
p−s−1

1− p−s−1
+

∫
(pZp)3

|xy − z2|sp |dxdydz|.

Since xy − z2 is a homogeneous polynomial of degree two, we can rewrite the last
integral, using the change of coordinates (x, y, z) = (px′, py′, pz′), as∫

Z3
p

|p2|sp |x′y′ − (z′)2|sp |p3|p |dx′dy′dz′| = p−2s−3I,

and thus

I =
p3 − p2

p3
+ (p2 − 1)

p− 1

p3
p−s−1

1− p−s−1
+ p−2s−3I.

An easy calculation then yields

I =
p− 1

p
· 1− p−s−3

(1− p−s−1)(1− p−2s−3)
.

There are some intriguing open problems concerning this formula.

(1) Prove for arbitrary f that Z(s) is rational in p−s using Igusa’s Stationary
Phase Formula. Recall that this result was already proven by Igusa using
other techniques [Ig1], see Theorem 3.7.

(2) Show that one can compute Z(s) explicitly for arbitrary f using finitely
many iterations of Igusa’s Stationary Phase Formula.

These two problems are probably strongly related, but we are not aware of a clear
strategy to attack them. In concrete examples, repeated application of Theorem
2.9 often results in an explicit expression for Z(s), which is a rational function
in p−s. Typically such an expression arises in two possible ways. Finitely many
iterations either yield immediately a concrete expression, or at some point the
original integral pops up again (one or more times) as in Example 2.10, and then
rewriting the resulting relation yields a concrete expression.

Can this experimental fact lead to a theorem for general f?

Exercise 2.11. Compute in some way
∫
Z2
p
|x2 + y2|sp |dxdy| (depending on p,

there are three cases). Verify that your findings are consistent with Exercise 1.5,
using Proposition 2.8.
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3. p-ADIC MANIFOLDS AND RATIONALITY OF THE ZETA

FUNCTION

3.1. p-adic manifolds

We only state briefly the essential features of p-adic manifolds, and refer for
a detailed explanation to [Ig4, Section 2.4]. Anyway, this notion is analogous to
classical real or complex analytic manifolds, defined via appropriate atlases.

Definition 3.1 (Informal). An n-dimensional Qp-analytic manifold or p-adic
manifold is a Hausdorff topological space that is locally (analytically) of the form
c+ (peZp)n for some c ∈ Qnp .

Remark 3.2. A special and crucial feature in the p-adic case is that any n-
dimensional p-adic manifold can be covered by (two by two) disjoint balls as above.

We want to mention the following remarkable structure theorem due to Serre
(although it will not be used in the sequel).

Theorem 3.3 (Serre, 1965 [Se]). Let X be a compact n-dimensional p-adic
manifold. Then X is isomorphic (as a p-adic manifold) to the disjoint union of r
times Znp , for a unique r ∈ {1, . . . , p− 1}.

Part of the proof. For the existence of such r, observe that X is compact
and thus a disjoint union of finitely many sets of the form c+ (peZp)n by Remark

3.2. That is, X =
⊔k
i=1 ci + (peiZp)n for some positive k.

Moreover, we have the following isomorphism of p-adic manifolds:

c+ (peZp)n
∼=−→ Znp : c+ pey 7→ y.

Therefore, X is isomorphic to
⊔k
i=1 Znp . Recall now that

Zp = pZp t (1 + pZp) t · · · t ((p− 1) + pZp) ∼=
p⊔
j=1

Zp.

Similarly, we have that Znp is isomorphic (as a p-adic manifold) to
⊔p
j=1 Znp . (Indeed,

Znp ∼= Zn−1p × Zp ∼= Zn−1p ×
⊔p
j=1 Zp ∼=

⊔p
j=1 Znp .)

Hence, if k is larger than p− 1 in
⊔k
i=1 Znp , we can reduce k by p− 1 using the

isomorphism above. Doing this until we obtain 1 ≤ k ≤ p − 1 yields the existence
of r. �

For the proof of uniqueness of r we refer to [Se]. Nowadays r is called the
(p-adic) Serre invariant of X.

Remark 3.4. On an n-dimensional p-adic manifold, one associates a measure
to a given Qp-analytic differential form of degree n, see e.g. [Ig3, Section 7.4] or
[Se]. For example, the Haar measure |dx| on Qnp is associated to the differential
form dx1 ∧ · · · ∧ dxn. In what follows, we will use this correspondence.

3.2. Resolution: analytic version

The statement below on embedded resolution follows essentially from Hiron-
aka’s work [28]. See also [BEV, Section 8], [ENV, Section 5], [W l2], [W l3], and
especially [DvdD, Theorem 2.2] for this p-adic setting.
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Theorem 3.5 (Embedded Resolution of Singularities; p-adic analytic version).
Let f ∈ Qp[x1, . . . , xn] \Qp and consider its zero locus {f = 0} ⊆ Qnp . Then there
exists an n-dimensional p-adic manifold Y , a proper Qp-analytic map h : Y → Qnp ,
and finitely many closed (n− 1)-dimensional submanifolds Ei, i ∈ I, of Y , equipped
with numerical data (Ni, νi) ∈ (Z>0)2, i ∈ I, satisfying

(1) h is an isomorphism of p-adic manifolds outside the inverse image by h
of the singular locus of {f = 0},

(2) h−1({f = 0}) = ∪i∈IEi,
(3) for all b ∈ Y there exist local coordinates (y1, . . . , yn) around b such that,

if b ∈ E1, . . . , Er (relabel if necessary), then yi = 0 is the equation of Ei
for 1 ≤ i ≤ r (i.e., h−1({f = 0}) is a normal crossings divisor), and such
that

f ◦ h = ε(y1, . . . , yn)
r∏
i=1

yNii , and

h∗(dx1 ∧ · · · ∧ dxn) = η(y1, . . . , yn)

r∏
i=1

yνi−1i dy1 ∧ · · · ∧ dyn

on some neighbourhood of b, where ε(y1, . . . , yn) and η(y1, . . . , yn) are
invertible.

Such a map h is called an embedded resolution of f .

Remark 3.6. It is possible to construct the map h as a composition of finitely
many admissible blow-ups. More precisely, each centre of blow-up is a closed sub-
manifold C of codimension at least 2 in the ambient manifold, having normal
crossings with the exceptional components created by previous blow-ups. That
is, there are local coordinates z1, . . . , zn around each point c of C, such that
each previously created exceptional component containing c is given by zi = 0
for some i ∈ {1, . . . , n}, and C is given by zi1 = · · · = zid = 0 with d ≥ 2 and
{i1, . . . , id} ⊆ {1, . . . , n}.

3.3. Rationality and candidate poles

Theorem 3.7 (Igusa, 1974 [Ig1]). Consider f ∈ Qp[x1, . . . , xn]. Then the
following statements hold.

(1) The Igusa zeta function Z(s) is a rational function in p−s = t. Therefore,
it has a meromorphic continuation to the whole of C.

(2) Fix an embedded resolution h of f and use notation as in Theorem 3.5.
Then

Z(s) =
Q(p−s)∏

j∈I(1− p−(Njs+νj))
,

or, equivalently,

Z ′(t) =
Q(t)∏

j∈I(1− p−νj tNj )
,

where Q is a polynomial with rational coefficients.
(3) The poles of Z(s) or Z ′(t) have order at most n.

In particular, the poles of Z(s) are contained in the list

− νj
Nj

+
2πk

(ln p)Nj
i, j ∈ I and k ∈ Z,
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or, equivalently, the poles of Z ′(t) are contained in the list

ξp
νj/Nj , j ∈ I and ξNj = 1.

Proof. We use a fixed embedded resolution h : Y → Qnp to perform a classical
change of variables computation (for a proof in the p-adic setting, see e.g. [Ig4,
Proposition 7.4.1]):

Z(s) =

∫
Znp
|f(x)|sp |dx|

=

∫
h−1(Znp )

|(f ◦ h)(y)|sp |Jac h(y)|p |dy|

=

∫
h−1(Znp )

|(f ◦ h)(y)|sp |h∗dx|.

Observe that the p-adic manifold h−1(Znp ) is compact because h is proper. There-

fore, we can write h−1(Znp ) as a disjoint union of finitely many sufficiently small
(open and compact) ‘balls’ B, that can be considered as neighbourhoods of points
b as in Theorem 3.5. We can take those balls of the form (peZp)

n, but for con-
crete computations it is sometimes useful to allow more flexibility and to take
balls B of the form

∏n
j=1 p

ejZp. We compute the integral over such a fixed

ball/neighbourhood:∫
B

∣∣∣∣∣∣ε(y)

r∏
j=1

y
Nj
j

∣∣∣∣∣∣
s

p

∣∣∣∣∣∣η(y)

r∏
j=1

y
νj−1
j

∣∣∣∣∣∣
p

|dy| =
∫
B

|ε(y)|sp |η(y)|p

∣∣∣∣∣∣
r∏
j=1

y
Njs+νj−1
j

∣∣∣∣∣∣
p

|dy|.

We may suppose (by taking the ball small enough) that |ε(y)|p and |η(y)|p are
constant. Indeed, ε and η (and their norms) are continuous functions and their
value at b is non-zero. Hence, since locally the p-adic norms |ε(y)|p and |η(y)|p take
discrete values (integer powers of p), they must be constant on a sufficiently small
neighbourhood. Then we can compute the integral above by separating variables
as

|ε(b)|sp |η(b)|p
r∏
j=1

∫
pejZp

|yj |Njs+νj−1p |dyj |
n∏

j=r+1

∫
pejZp

|dyj |.

Since |ε(b)|, |η(b)| and
∏n
j=r+1

∫
pejZp

|dyj | are all constants (integer powers of p),

the integral is equal to the product of a constant, an integer power of p−s, and the
expression

r∏
j=1

(1− p−1)p−ej(Njs+νj)

1− p−(Njs+νj)
,

using Exercise 2.6. Summing these contributions over all balls B, and putting
everything on a common denominator, we obtain that Z(s) is a rational function
in p−s of the described form.

Moreover, it is clear that all contributions have poles of order at most n. �

Remark 3.8. For a polynomial f ∈ R[x1, . . . , xn] and s ∈ C with <(s) > 0,
one classically studies integrals∫

Rn
ϕ(x)|f(x)|s |dx|,
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analogous to those in Definition 2.1, where now the test function ϕ is a C∞ func-
tion with compact support and |dx| the Lebesgue measure on Rn (and similarly
for a complex polynomial). It is again easy to verify that such an integral is a
holomorphic function of s in the domain <(s) > 0. I. Gel’fand asked in 1954
whether there exists a meromorphic continuation of this integral to the whole of
C. Independently, Bernstein and S. Gel’fand [BG] in 1969 and Atiyah [At] in 1970
proved this using resolution of singularities. Alternatively, Bernstein [Be] showed
it using Bernstein-Sato polynomials in 1972. Note that both techniques were not
yet available in 1954.

Remark 3.9. The possible poles of Z(s), namely {− νj
Nj

+ 2πk
(ln p)Nj

i | j ∈ I,
k ∈ Z}, are called the candidate poles (associated to the resolution h). Intriguingly,
in general most of the candidate poles turn out to be no poles of the Igusa zeta
function (this is why elements of this set are called candidate poles). The reason
for this behaviour is not yet understood in full generality. When n = 2, we will
determine the actual poles in Section 6.

In general, it is quite difficult to obtain an explicit formula for concrete examples
via the technique in the proof of Theorem 3.7. We sketch an easy case where this
is doable.

Example 3.10. Consider Z(s) =
∫
Z2
p
|xy(x− y)|sp |dxdy|. As embedded resolu-

tion h : Y → Q2
p of xy(x− y) we take the blow-up at the origin.

E1

E2

E3

E

h

E1

E2

E3

Then Y is covered by two affine charts, both isomorphic to Q2
p. The restrictions h1

and h2 of h to those charts can be described in affine coordinates by

h1 : (x, u) 7→ (x, y = ux) and h2 : (y, v) 7→ (x = vy, y),

respectively. The exceptional curve E is a projective line with equation x = 0 and
y = 0 in the first and second chart, respectively.

A crucial point is an adequate description of h−1(Z2
p). Writing for example

Z2
p = {(x, y) | ordpy ≥ ordpx ≥ 0} t {(x, y) | 0 ≤ ordpy < ordpx},

we can interpret h−1(Z2
p) as the disjoint union of Z2

p (with coordinates (x, u) in the
first chart), and Zp×pZp (with coordinates (y, v) in the second chart). Then, using
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change of variables with respect to h, we obtain that

Z(s) =

∫
Z2
p

|x3u(1− u)|sp |x|p |dxdu|+
∫
Zp×pZp

|y3v(v − 1)|sp |y|p |dydv|.

To compute the first integral, use separation of variables:∫
Z2
p

|x3u(1− u)|sp |x|p |dxdu| =
∫
Zp
|x|3s+1

p |dx| ·
∫
Zp
|u(1− u)|sp |du|.

The first factor can be computed using Exercise 2.6, the second one by doing a
straightforward computation or using Theorem 2.9. Similarly, one can compute the
second integral. We leave this as an exercise. Finally, we obtain

Z(s) =
(p− 1)p3s(−1 + 2p− 2ps+1 + ps+2)

(ps+1 − 1)(p3s+2 − 1)
.

Remark that the numerical data associated to the exceptional divisor E and to the
strict transforms E1, E2 and E3 are given by (3, 2) and (1, 1), respectively.

Exercise 3.11. Verify the result in Example 3.10 using Igusa’s Stationary
Phase Formula.

Remark 3.12. As a corollary of Theorem 3.7, the Igusa zeta function Z(s)
always converges on a larger part of C than <(s) > 0, namely for all s ∈ C such
that <(s) > −mini∈I

νi
Ni

. The value mini∈I
νi
Ni

is an important invariant, sometimes
called the p-adic log canonical threshold of f .

When working with polynomials over C (or any algebraically closed field of
characteristic zero) and their embedded resolutions, the analogous minimum is a
famous singularity invariant, called the (geometric) log canonical threshold. Note
that the geometric one can be smaller than the p-adic one, due to singular points
that are not defined over Qp. Take for example the polynomial f = y2−x3(x2+1)5.
Its zero locus over C contains the three singular points (0, 0), (i, 0) and (−i, 0). It
is not difficult to verify that the last two induce the log canonical threshold 7

10 of
f . However, for p ≡ 3 mod 4, the origin is the only singular point of the zero locus
of f over Qp, inducing the p-adic log canonical threshold 5

6 of f .

Theorem 3.13 ([Ig2], [VZ1], [VZ2]). Let f ∈ Qp[x1, . . . , xn]. Fix an embed-
ded resolution of f and use notation as in Theorem 3.5. Write σ := mini∈I

νi
Ni

.

Then σ does not depend on the chosen resolution and −σ is always a pole of Z(s).

4. DENEF’S FORMULA

There is an explicit formula, due to Denef, in terms of an algebro-geometric ver-
sion of embedded resolution. This formula is however only valid for all but finitely
many p. We need several preparations to state this result. We first mention such
a version of embedded resolution, valid over an arbitrary field K of characteristic
zero (not necessarily algebraically closed). In the formulation below all varieties
and morphisms are defined over K and such a variety is called irreducible if it is
irreducible as K-variety.
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4.1. Resolution: algebro-geometric version

Theorem 4.1 (Embedded Resolution of Singularities; algebro-geometric ver-
sion [Hi]). Let K be a field of characteristic 0 and f ∈ K[x1, . . . , xn] \ K. Then
there exists an n-dimensional smooth and irreducible variety Y , a proper bira-
tional morphism h : Y → AnK , and finitely many closed (n − 1)-dimensional
smooth and irreducible subvarieties Ei, i ∈ I, of Y , equipped with numerical data
(Ni, νi) ∈ (Z>0)2, i ∈ I, satisfying

(1) h is an isomorphism of algebraic varieties outside the inverse image by h
of the singular locus of {f = 0},

(2) h−1({f = 0}) = ∪i∈IEi,
(3) h−1({f = 0}) is a normal crossings divisor, and

div(f ◦ h) = h∗div(f) =
∑
i∈I

NiEi and KY/AnK = div(Jac h) =
∑
i∈I

(νi − 1)Ei,

where KY/AnK = KY −h∗KAnK denotes the relative canonical divisor of the
map h, which in this case is just the canonical divisor KY , since KAnK = 0.

Note that writing the last part in local coordinates is compatible with the last part
of Theorem 3.5.

Remark 4.2. It is again possible to construct the map h as a composition
of finitely many admissible blow-ups at closed smooth and irreducible centres (all
defined over K), i.e., each centre has normal crossings with the previously created
exceptional components.

4.2. Reduction mod p

Let f ∈ Z[x1, . . . , xn] \ pZ[x1, . . . , xn]. Writing f explicitly as

f =
∑
j1,...,jn

aj1,...,jnx
j1
1 . . . xjnn , the reduction mod p of f is

f̄ = f mod p :=
∑

j1,...,jn

aj1,...,jnx
j1
1 . . . xjnn ∈ Fp[x1, . . . , xn],

where aj1,...,jn is the class of aj1,...,jn ∈ Z in Z/pZ = Fp. Similarly, one defines the
reduction mod p of f ∈ Zp[x1, . . . , xn] \ pZp[x1, . . . , xn], also denoted by f̄ .

More generally, let f ∈ Qp[x1, . . . , xn] be a nonzero polynomial and consider
D := div(f) in AnQp . Pick the unique e ∈ Z such that pef ∈ Zp[x1, . . . , xn] \
pZp[x1, . . . , xn] . Define the reduction mod p of D as D = D mod p := div(pef),

where pef is the reduction mod p of pef as explained above. Hence D is a divisor
in AnFp , and can be considered as a subscheme of AnFp .

Example 4.3. Consider f = y−p3x2 ∈ Zp[x, y]\pZp[x, y]. Then D := div(f) is

a parabola in A2
Qp , but D = div(y − p3x2) = div(y) is a line in A2

Fp . The polynomial

f = p−2y − px2 ∈ Qp[x, y] induces the same divisors D and D.

In fact, there is a well-defined notion of reduction mod p for any algebraic
variety or scheme Z over Qp. It is a scheme defined over Fp, denoted by Z. Similarly,
there is a well-defined notion of reduction mod p for any morphism g of Qp-schemes,
being a morphism g of the corresponding Fp-schemes. See for example [De1] and
the references therein.
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We now introduce the necessary terminology and notation to state Denef’s
formula. Consider an embedded resolution h : Y → AnQp of f ∈ Qp[x1, . . . , xn]\Qp,
for which we use notation as in Theorem 4.1. Then

Ei Y AnQp D = div(f)h

has a reduction mod p:

Ei Y AnFp D.h

Definition 4.4 (Denef [De1]). We say that h has good reduction mod p if

(1) Y and all Ei, i ∈ I, are smooth,
(2)

⋃
i∈I Ei is a normal crossings divisor,

(3) Ei and Ej have no common components for i 6= j.

Example 4.5 (Bad reduction). We give examples that show how these condi-
tions might fail.

(1) The zero locus of g = px + x2 − y2 is smooth, but the zero locus of
g = x2 − y2 = (x+ y)(x− y) is not.

(2) The zero loci of g = x and g′ = x + py − y2 have normal crossings, but
those of g = x and g′ = x− y2 do not.

(3) The zero loci of g = px+ y + p and g′ = px+ y are disjoint, but g = g′.

Notation 4.6. For J ⊆ I, define EJ =
⋂
j∈J Ej and E̊J = EJ \

⋃
k 6∈J Ek.

Note that in particular E∅ = Y and E̊∅ = Y \
⋃
i∈I Ei.

4.3. The formula

Theorem 4.7 (Denef’s formula, 1987 [De1]).

(1) Let f ∈ Qp[x1, . . . , xn] \Qp. If h : Y → AnQp is an embedded resolution of

f with good reduction mod p, then

Z(s) =
1

pn

∑
J⊆I

](E̊J(Fp))
∏
j∈J

p− 1

pNjs+νj − 1
.

(2) Let f ∈ Q[x1, . . . , xn] \ Q. Let h : Y → AnQ be an embedded resolution of
f . For any prime p, we can also consider f ∈ Qp[x1, . . . , xn] and view Y
and h as defined over Qp. Then, for all but finitely many p, the resolution
h (considered over Qp) has good reduction mod p.

Note that for a fixed prime p, it is possible that there exists no embedded resolution
of a given f ∈ Q[x1, . . . , xn] with good reduction mod p.

Remark 4.8. Traditionally, the factors in the product above are written as
(p−1)p−Njs−νj
1−p−Njs−νj

, in order to view Z(s) explicitly as a function in p−s. The presentation

above is often somewhat more efficient.

Remark 4.9. We define the contribution of Ei to the Igusa zeta function Z(s)
to be

1

pn

∑
i∈J⊆I

](E̊J(Fp))
∏
j∈J

p− 1

pNjs+νj − 1
.

If this contribution has no pole at s0 = −νi/Ni, we say that Ei does not contribute
to the candidate pole s0 of Z(s). Note that in this case −νi/Ni might still be a
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pole of Z(s); this is however only possible if there exists some other Ej satisfying
s0 = −νj/Nj = −νi/Ni that does contribute to the pole s0.

Example 4.10. Consider f = xy(x − y) as in Example 3.10. The blow-up
at the origin h is also an embedded resolution in the sense of Theorem 4.1, and
moreover with good reduction mod p for all primes p. Denote the exceptional curve
of h by E and the strict transforms in Y of the three components of div(f) by
E1, E2, E3. Then, with the notation of Theorem 4.7, E is a projective line, and
(for i = 1, 2, 3) Ei is an affine line and E ∩ Ei a point, all defined over Fp. Hence

](E̊∅(Fp)) = p2−(3p−2), ](E̊(Fp)) = (p+1)−3 and ](E̊i(Fp)) = p−1 for i = 1, 2, 3.
Adding everything, Denef’s formula yields

Z(s) =
1

p2

(
p2 − 3p+ 2 + (p− 2)

p− 1

p3s+2 − 1

+3(p− 1)
p− 1

ps+1 − 1
+ 3 · 1 (p− 1)2

(p3s+2 − 1)(ps+1 − 1)

)
.

Verify that this is the same result as in Example 3.10.

Example 4.11. Consider f = x2 + y2 as in Exercises 1.5 and 2.11.

(1) Let p ≡ 1 mod 4. Take α ∈ Zp such that α2 = −1. Then the zero locus
of f = (x − αy)(x + αy) consists of two affine lines E1 and E2 over Qp,
intersecting transversely in the origin. Hence we can take the identity as
resolution map h. Check that it has good reduction mod p. Compute Z(s)
using Denef’s formula (there are four terms), and compare with Exercise
2.11.

E1

E2

(2) Let p ≡ 3 mod 4. Then E0 = div(f) is irreducible as Qp-scheme, and
its only point with coordinates in Qp is the origin. In the figure below,
we ‘suggest’ E0 by indicating with dashed lines its two components over
the quadratic extension of Qp in which −1 is a square. Take the blow-up
at the origin as resolution map h : Y → A2

Qp . The exceptional curve E

is a projective line over Qp, and the strict transform of E0 in Y is a 1-
dimensional irreducible Qp-scheme (now without Qp-points), given in one
chart by 1 + u2 = 0.
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E0

E0

E

h

E0

E0

Hence E is a projective line over Fp, E0 in Y is an irreducible Fp-
scheme without Fp-points, still given in one chart by 1 + u2 = 0, and

E ∩ E0 is a 0-dimensional irreducible Qp-scheme, given in one chart by
x = 1+u2 = 0, also without Fp-points. In particular, h has good reduction
mod p. Compute Z(s) using Denef’s formula (there are two terms), and
compare with Exercise 2.11.

(3) Let p = 2. Then again div(f) is irreducible as Q2-scheme, and the blow-up
at the origin is a resolution map h. Verify however that h does not have
good reduction mod 2. In this case we cannot apply Denef’s formula.

Exercise 4.12.

(1) Compute the Igusa zeta function for f = y2 − x3, using Denef’s formula.
Then use Proposition 2.8 to compute its Poincaré series; you should obtain
what was claimed in Example 1.11.

(2) Verify the result of Example 2.10 for f = xy − z2, using Denef’s formula.

Remark 4.13. The relatively easy examples that we considered up to now are
somewhat misleading. In general, it is very hard to determine whether a resolution
h has good reduction mod p for a given (small) prime p. Denef’s formula is typically
used when f ∈ Q[x1, . . . , xn] and one wants to compute Zp(f ; s) or prove properties
of Zp(f ; s) for large enough p.

Remark 4.14. Another technique to compute the Igusa zeta function is by
using toric geometry. Denef and Hoornaert [DH] give a combinatorial formula to
compute Z(s) when f ∈ Qp[x1, . . . , xn] is non-degenerate (mod p) with respect to
its Newton polyhedron. That formula contains typically less candidate poles than
the list given by an embedded resolution.

5. BACK TO POLYNOMIAL CONGRUENCES

Recall the original problem: given f ∈ Z[x1, . . . , xn], we want to study the
values

Mi = Mi(p) = ]

{
a ∈

(
Z
piZ

)n
| f(a) ≡ 0 mod pi

}
.

In this section, we discuss how to use the machinery we introduced before to obtain
information about the Mi.
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5.1. Asymptotic behaviour of the Mi

We start with an example.

Example 5.1. Let f = y2−x3 ∈ Z[x, y]. Recall from Example 1.11 or Exercise
4.12 that

P (T ) =
p6 + (p4 − p3)T 2 − T 6

(p− T )(p5 − T 6)
=

1 + (p−2 − p−3)T 2 − p−6T 6

(1− p−1T )(1− p−5T 6)
.

Using partial fraction decomposition, we know that there exists a constant q ∈ Q
and a polynomial Q(T ) ∈ Q[T ] (of degree at most 5) such that

P (T ) =
q

1− p−1T
+

Q(T )

1− p−5T 6
.

Combining this with the definition of P (T ) we obtain∑
i≥0

Mi(p
−2T )i = P (T ) = q

∑
i≥0

(p−1T )i +Q(T )
∑
i≥0

(p−5T 6)i.

Exercise 5.2. Compute q and Q of Example 5.1 explicitly and give explicit
formulas for the Mi (depending on the value of i mod 6). For example, when
i = 6e (e ∈ Z>0), you should obtain M6e = (p + 1)p7e−1 − p6e−1. Conclude that

the asymptotic behaviour of the Mi is roughly p
7
6 i.

In general, it is not difficult to conclude the following (using Theorem 3.13 to
identify σ), see for instance [VZ1, Theorem 2.7] and [VZ2, Remark 3.11].

Proposition 5.3. Let f ∈ Z[x1, . . . , xn]. Denote by −σ the largest real part of
a pole of Z(s), i.e., σ is the p-adic log canonical threshold of f . Equivalently, pσ

is the smallest modulus of a pole of Z ′(t) or P (T ). Then the main contribution to
the Mi is determined by σ: roughly, the Mi behave asymptotically as p(n−σ)i. More

precisely: lim supiM
1/i
i = pn−σ.

Moreover, if −σ is a pole of Z(s) of order d (where necessarily d ≤ n), then
there exists a positive constant C such that Mi ≤ Cid−1p(n−σ)i for all i.

Note that for the cusp (see Example 5.1 and Exercise 5.2) we have indeed

lim supiM
1/i
i = p2−5/6 = p7/6.

Remark 5.4. An exact expression for the Mi, with ‘dominating term’ as in
Proposition 5.3, involves necessarily data from all poles of P (T ). Such a complete
description of the Mi in terms of the actual poles of P (T ) and their orders (and
partial fraction decomposition) was given by Segers in full generality in [Sg2]. (Note
that there is a crucial typo in [Sg2]. On the last line of page 4 the numbers involving
e must be augmented by 1.) The outcome of Exercise 5.2 is a very special case of
this description.

Here we should stress that determining the actual poles is in general a difficult
problem. When n = 2, this is understood and explained in the next section.

5.2. Divisibility properties of the Mi

There is a remarkable theorem by Segers stating (1) divisibility properties of
the Mi by powers of p, (2) a sharp lower bound for the possible real parts of poles
of Z(s), and (3) the relation between those two properties. In order to place this
result into context, we first mention an ‘easy’ lower bound for the real parts of
poles.
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Proposition 5.5. Let f ∈ K[x1, . . . , xn] \K, where K is any field of charac-
teristic zero and n ≥ 2. Consider an embedded resolution h : Y → AnK of f , that
is constructed as a finite composition of admissible blow-ups at smooth centres Zi
(always contained in the strict transform of the divisor of f). Each such blow-up
induces an exceptional component Ei with numerical data (Ni, νi).

(1) Let Zj be contained in Ei1 , . . . , Eil (and not in the other E`). Denote by
µj the multiplicity of the strict transform of the divisor of f along Zj.
Then

Nj =

l∑
k=1

Nik + µj ,

νj =

l∑
k=1

(νik − 1) + codim(Zj),

where codim(Zj) = n− dim(Zj) is the codimension of Zj in the ambient
space.

(2) Assume that each centre Zj is contained in an exceptional component or
in the singular locus of the strict transform. Then all νi

Ni
≤ n− 1.

Proof. We explain the argument with local analytic coordinates in the ana-
lytic setting when K is Qp, R or C. A similar argument can be given with étale
coordinates in a general algebro-geometric setting.

(1) Choose local coordinates z1, . . . , zn around a general point b of Zj such that
Eik is given by {zk = 0} for k = 1, . . . , l and Zj is given by {z1 = · · · = zd = 0} in
a neighbourhood of b. Note that d = codim(Zj) ≥ l. Suppose that, locally around
b, the strict transform of f is given by fj−1(z1, . . . , zn). With local coordinates
x1, . . . , xn in the first chart of the blow-up at the center Zj , this blow-up is described
by the change of variables

(x1, x2, . . . , xd, xd+1, . . . , xn) 7→
(z1 = x1, z2 = x1x2, . . . , zd = x1xd, zd+1 = xd+1, . . . , zn = xn).

Hence the pullback of

ε(z1, . . . , zn)zN1
1 zN2

2 . . . zNll fj−1(z1, . . . , zn)

is

ε′(x1, . . . , xn)x
N1+···+Nl+µj
1 xN2

2 . . . xNll fj(x1, . . . , xn),

with fj not divisible by xi for i = 1, . . . , l and ε, ε′ invertible. Therefore, Nk equals∑l
k=1Nik + µj .

Similarly, the pullback of

η(z1, . . . , zn)zν1−11 zν2−12 . . . zνl−1l dz1 ∧ dz2 ∧ · · · ∧ dzn
is

η′(x1, . . . , xn)xν1−1+ν2−1+···+νl−1+d−11 xν2−12 . . . xνl−1l dx1 ∧ dx2 ∧ · · · ∧ dxn,

with η, η′ invertible. Hence, νj =
∑l
k=1(νik − 1) + d =

∑l
k=1(νik − 1) + codim(Zj).

(2) Concerning the first blow-up with centre Z1 and exceptional component
E1, we know that (N1, ν1) = (µ1, d1) with µ1 the multiplicity of f at Z1 and
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d1 = codim(Z1). By assumption, Z1 is contained in the singular locus of {f = 0},
hence µ1 ≥ 2. Consequently, ν1

N1
= d1

µ1
≤ n

2 ≤ n− 1.

Next, we suppose that Zj is contained in at least one exceptional component.

We use the notation of part (1), where we may assume by induction that
νik
Nik
≤ n−1

for k = 1, . . . , l. Compute

νj
Nj

=

∑l
k=1(νik − 1) + codim(Zj)∑l

k=1Nik + µj

≤
∑l
k=1(n− 1)Nik − l + n∑l

k=1Nik + µj

=
(n− 1)

∑l
k=1Nik∑l

k=1Nik + µj
− l − n∑l

k=1Nik + µj

= n− 1− (n− 1)µj + l − n∑l
k=1Nik + µj

.

Since µj ≥ 1 and l ≥ 1, we conclude that
νj
Nj
≤ n− 1. �

Note that the assumption in Proposition 5.5(2) is always satisfied if no ‘stupid’
blow-ups are used to construct the resolution h. A stupid example is blowing up
at a smooth point of the divisor of f ; this yields an exceptional component with
numerical data (N1, ν1) = (1, n) and then n

1 is not bounded by n− 1.

As a corollary of Proposition 5.5, all real parts of poles of zeta functions Z(s)
are larger than or equal to −(n− 1). The following much stronger result of Segers
was in fact not conjectured before, and is proven by quite elementary arguments
and techniques. In fact, he first shows the divisibility properties, and derives the
bound on the poles from it.

Theorem 5.6 (Segers, 2006 [Sg1]). Let f ∈ Z[x1, . . . , xn], where n ≥ 2, and
fix any prime p. Then

(1) Mi is divisible by pdn/2(i−1)e for all i,
(2) all real parts of poles of Z(s) are larger than or equal to −n2 .

Exercise 5.7. Verify that for f = x21 + x22 + · · · + x2n the lower bound −n2 is
an actual pole of the zeta function Z(s).

6. IGUSA ZETA FUNCTION FOR PLANE CURVES

For polynomials in two variables, the poles of its Igusa zeta function are well
understood.

6.1. Example and non-contribution

Example 6.1. Consider the polynomial f = y2 − x2019 and its minimal em-
bedded resolution h, where E0 denotes the strict transform.
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. . .

E1011

E1010

E1009

E1008

E1007
E2 E1

E0

h

The numerical data associated to this minimal resolution are as follows:

(Ni, νi) =



(1, 1) if i = 0,

(2i, i+ 1) if 1 ≤ i ≤ 1009,

(2019, 1011) if i = 1010,

(4038, 2021) if i = 1011.

Hence, there are 1012 different real values of candidate poles − νi
Ni

of Z(s). However,
using Denef’s formula, and either a lot of courage or a computer, one computes that

Z(s) =
a polynomial in p−s(

1− p−(s+1)
) (

1− p−(4038s+2021)
) .

Remark 6.2. Using either the formula for non-degenerate polynomials of Denef
and Hoornaert [DH], or the formula in [Ve5] in terms of the relative log canonical
model (which is a certain partial resolution), there are only two candidate real parts
of poles, and one obtains this result quite immediately.

Example 6.1 illustrates the general ‘geometric determination’ of the actual poles
of Z(s). Roughly speaking, exceptional components Ei that intersect exactly once
or twice other components do not contribute to the poles, and other exceptional
components or components of the strict transform do contribute. We explain the
main point of the non-contribution argument, in the setting of Denef’s formula.

Lemma 6.3. Let f ∈ Qp[x, y] \Qp and h : Y → A2
Qp an embedded resolution of

f with good reduction mod p. Let E (with numerical data (N, ν)) be an exceptional
component of h, intersecting two other components, say E1 and E2 (with numerical
data (N1, ν1) and (N2, ν2), respectively). Here we mean ‘intersecting over Qp’, i.e.,
E is a projective line over Qp and each of the two intersection points is defined over
Qp. Assume that E induces a candidate pole of order 1, i.e., ν

N 6=
νi
Ni

for i = 1, 2.

Then E does not contribute to a pole (in the sense of Remark 4.9).
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Proof. The contribution of E to the Igusa zeta function is equal to

1

p2

(
]((E \ (E1 ∪ E2))(Fp))

p− 1

pNs+ν − 1
+ ]((E ∩ E1)(Fp))

p− 1

pNs+ν − 1
· p− 1

pN1s+ν1 − 1

+]((E ∩ E2)(Fp))
p− 1

pNs+ν − 1
· p− 1

pN2s+ν2 − 1

)
=

1

p2

(
(p− 1)

p− 1

pNs+ν − 1
+

p− 1

pNs+ν − 1
· p− 1

pN1s+ν1 − 1
+

p− 1

pNs+ν − 1
· p− 1

pN2s+ν2 − 1

)
=

(p− 1)2

p2

(
(pN1s+ν1 − 1)(pN2s+ν2 − 1) + pN2s+ν2 − 1 + pN1s+ν1 − 1

(pNs+ν − 1)(pN1s+ν1 − 1)(pN2s+ν2 − 1)

)
=

(p− 1)2

p2

(
p(N1+N2)s+ν1+ν2 − 1

(pNs+ν − 1)(pN1s+ν1 − 1)(pN2s+ν2 − 1)

)
.

By Lemma 6.5, there exists some κ ∈ Z>0 such that κN = N1+N2 and κν = ν1+ν2.
Therefore, the contribution of E is given by

(p− 1)2

p2

(
pκ(Ns+ν) − 1

(pNs+ν − 1)(pN1s+ν1 − 1)(pN2s+ν2 − 1)

)
=

(p− 1)2

p2

( ∑κ−1
j=0 p

j(Ns+ν)

(pN1s+ν1 − 1)(pN2s+ν2 − 1)

)
.

Hence, E does not contribute to a pole of Z(s). �

Remark 6.4. When E, defined over Qp, intersects only once another compo-
nent, say E1, then the intersection point is automatically defined over Qp. Assuming
that ν

N 6=
ν1
N1

, the same proof (putting formally (N2, ν2) = (0, 1)) yields that E does
not contribute to a pole.

The following lemma was first proven for arbitrary plane curves by Loeser [Lo]
(preceded by some partial results by Strauss, Meuser and Igusa). We present a
conceptual proof, which is the starting point of a generalized theory of relations
and congruences between numerical data in arbitrary dimension n [Ve1], [Ve2].

Lemma 6.5. Let h : Y → A2 be an embedded resolution of singularities of a

plane curve C with defining equation g. Write h−1(C) = E ∪
⋃k
i=1Ei, where E is

a fixed exceptional component. Let E intersect exactly r times other components,
say E1, . . . , Er. Then there exists some κ ∈ Z>0 such that κN =

∑r
i=1Ni and

κν =
∑r
i=1(νi − 1) + 2. More precisely, κ = −E2 where E2 = E · E is the self-

intersection number of E on Y .

Proof. Recall that the Picard group Pic(Y ) of Y is defined as the group of
Cartier divisors on Y modulo linear equivalence. In Pic(Y ) we have that

NE +

k∑
i=1

NiEi = h∗div(g) = div(h∗(g)) = 0

and

(ν − 1)E +

k∑
i=1

(νi − 1)Ei = KY − h∗KA2 = KY .
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We compute the intersection product of both expressions with E (in Pic(Y )). First,

0 = E · 0 = E ·

(
NE +

k∑
i=1

NiEi

)
= E ·NE + E ·

(
r∑
i=1

NiEi

)
= NE2 +

r∑
i=1

Ni.

Hence, κN = −NE2 =
∑r
i=1Ni. Similarly, we compute

E ·KY = E ·

(
(ν − 1)E +

k∑
i=1

(νi − 1)Ei

)

= E · (ν − 1)E + E ·

(
r∑
i=1

(νi − 1)Ei

)
= (ν − 1)E2 +

r∑
i=1

(νi − 1).

Using the adjunction formula, we obtain

−2 = degKE = (KY + E) · E = νE2 +

r∑
i=1

(νi − 1),

and hence κν = −νE2 =
∑r
i=1(νi − 1) + 2. �

Remark 6.6. Observe that Lemma 6.5 agrees (as it should) with the numerical
data in Example 6.1.

6.2. Structure of dual graph and general result

Before stating the general theorem on the determination of the poles of Z(s) for
n = 2, it is useful to know the structure of the dual graph of the minimal embedded
resolution of f , decorated with the values νi

Ni
. This is a geometrical and ‘local’

result; so we assume now that f is defined over C, and we consider only the germ
of f at the origin. (We also exclude the trivial case where this germ has already
normal crossings.)

Notation 6.7. Let h : Y → AnC be an embedded resolution of the germ at 0
of {f = 0}. The dual graph associated to this resolution is a graph that consists
of the following data. The vertices of the graph correspond to the irreducible
components of h−1({f = 0}). The exceptional components are represented by a
dot, the (analytically irreducible) components of the strict transform by a circle.
Two vertices are connected by an edge precisely when the associated components
intersect. It is well known that this dual graph is a tree, where all circles are end
vertices.

A vertex with at least three edges is depicted in the following way.

Theorem 6.8 (Veys, 1995 [Ve4]). Consider the minimal embedded resolution
h : Y → AnC of f with irreducible components Ei, i ∈ I, and associated numerical
data (Ni, νi), i ∈ I. Denote the locus (with edges) where νi

Ni
is minimal byM. Then

M is connected and has one of the following possible forms, where r ≥ 0.
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(1)

E1 E2 Er

(2)

(3)

E1 E2 Er

(4)

When f is reduced, the last two cases (3) and (4), involving a component of the
strict transform, cannot occur.

Furthermore, starting from M, the values νi
Ni

strictly increase along each path
away from M.

When n = 2, we already knew that poles of Z(s) have order at most 2. Theorem
6.8 implies that there is at most one real part of a pole of order 2; here is the precise
statement.

Corollary 6.9 (Veys, 1995 [Ve4]). Let f ∈ Qp[x, y] \Qp. Let h : Y → Q2
p be

an embedded resolution of f as in Theorem 3.5. A real number s0 is (the real part
of) a pole of order 2 of Z(s) if and only if there exist i, j ∈ I with s0 = − νi

Ni
= − νj

Nj

for intersecting components Ei and Ej. In that case, s0 equals minus the p-adic log
canonical threshold of f .

Remark 6.10. The following generalisation (to higher dimension) was conjec-
tured by the second author in 1999 [LV], and proven by Nicaise and Xu in 2016
[NX]. Let f ∈ Qp[x1, . . . , xn] and consider its associated Igusa zeta function Z(s).
The real part of a pole of order n of Z(s) must be equal to minus the p-adic log
canonical threshold of f . In particular, there is at most one possible real part of a
pole of order n.

Also, the real part of a pole of order n is of the form − 1
k for some positive

integer k [LV].

Concerning the poles of order 1, ‘morally’ an exceptional Ei does not contribute
if and only if it intersects other components in exactly one or two points defined
over Qp. In order to formulate this precisely, it is more convenient to state it in
terms of the local equation of the strict transform before the creation of Ei in the
resolution process.

Also, as for the structure of the dual resolution graph, the result is ‘local’ in
the sense that it is formulated for one singular point.

Theorem 6.11 (Ibadula-Segers, 2012 [IS]). Let f ∈ Qp[x, y]. Suppose that
the origin is the only singular point of {f = 0}. Let h : Y → Q2

p be an embedded
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resolution of f as in Theorem 3.5, constructed as a finite composition of admissible
blow-ups. Let s0 = − νi

Ni
for some i ∈ I, such that s0 is not a pole of order 2 of

Z(s).

(1) Suppose that s0 6= − νi
Ni

for all components Ei of the strict transform of
f . Then s0 is a pole of order 1 if and only if there is an exceptional
component Ei with s0 = − νi

Ni
satisfying the following. Write the equation

of the strict transform of f , at the stage of h before the blow-up with centre
C where Ei is created as exceptional component, as a convergent power
series in local analytic coordinates around C; then the lowest degree part
of this power series is not a power of a linear form (over Qp) or a product
of two such powers.

(2) Let s0 = − νi
Ni

for a component Ei of the strict transform of f . Then
s0 is always ‘locally’ a pole of order 1 in the sense that it is a pole of∫
(pkZp)2 |f(x, y)|sp |dxdy| for some large enough k.

Exercise 6.12. Let f = y(x2+y2)+x4 and fix a prime p such that p ≡ 3 mod 4.
The blow-up at the origin is an embedded resolution of f . In the figure below, we
sketch the germ of f at the origin, where the dashed lines ‘suggest’ the tangent
directions that are only defined over the quadratic extension of Qp in which −1 is
a square.

E

The exceptional curve E has numerical data (N, ν) = (3, 2). In the context of
p-adic manifolds, E intersects the strict transform only in one point. However,
geometrically (already over that quadratic extension of Qp), the exceptional curve
E intersects the strict transform three times. This is reflected in the lowest degree
part of f , which is over Qp the product of a linear form and an irreducible quadratic
form. Hence, by Theorem 6.11 we know that − 3

2 is a pole of order 1 of Z(s).

Remark 6.13. The determination of non-real poles is less clear. Consider
for example f = x2 + y2 as in Exercises 1.5 and 2.11 and Example 4.11. When
p ≡ 3 mod 4, we have that both −1 and −1 + π

ln p i are poles of order 1 of Z(s).

On the other hand, when p = 2, we have that −1 is a pole of order 1 of Z(s), but
−1 + π

ln 2 i is not a pole.

7. TOPOLOGICAL AND MOTIVIC ZETA FUNCTION

The p-adic Igusa zeta function has two remarkable ‘spin-offs’.
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7.1. Topological zeta function

Recall Denef’s formula for the zeta function of f ∈ Q[x1, . . . , xn] in terms of an
embedded resolution h defined over Q, and valid for all primes p for which h has
good reduction mod p. Using the notation of Section 4, we have

Zp(f ; s) =
1

pn

∑
J⊆I

](E̊J(Fp))
∏
i∈J

p− 1

pNis+νi − 1
.

We now indicate a funny heuristic argument to compute the limit of this expression,
when p tends to 1 (whatever that means . . . ). First, using l’Hôpital’s rule, p−1

pNis+νi−1

tends to 1
Nis+νi

. More challenging, by Grothendieck’s trace formula, ](E̊J(Fp)) can
be written as an alternating sum of traces of the pth power Frobenius operator,

acting on adequate `-adic cohomology groups of E̊J [De2]. The limit when p tends
to 1 of this operator is morally the identity operator, and then that alternating sum

tends to the alternating sum of the dimensions of the cohomology groups of E̊J ,
that is, to an `-adic Euler characteristic. Finally, a comparison theorem motivates
to consider the usual topological Euler characteristic χ(E̊J) of the complex points

of E̊J as the limit of ](E̊J(Fp)). (It should be clear what we mean by E̊J ; we make
it explicit below.) We conclude that heuristically

lim
p→1

Zp(f ; s) =
∑
J⊆I

χ(E̊j)
∏
i∈J

1

Nis+ νi
.

Denef and Loeser were inspired by this heuristic argument to define a new singu-
larity invariant for any f ∈ C[x1, . . . , xn].

Consider an embedded resolution h : Y → AnC of f as in Theorem 4.1 with

K = C. Furthermore, for J ⊆ I, we denote EJ =
⋂
j∈J Ej and E̊J = EJ \

⋃
k 6∈J Ek.

(In particular, E̊∅ = Y \
⋃
i∈I Ei.)

Definition 7.1 (Denef-Loeser, 1991 [DL1]). Let f ∈ C[x1, . . . , xn] \ C and
choose an embedded resolution h : Y → AnC of f . The topological zeta function of
f is

Ztop(s) = Ztop(f ; s) :=
∑
J⊆I

χ(E̊J)
∏
i∈J

1

Nis+ νi
.

Remark 7.2. It is not clear that the topological zeta function is well-defined,
i.e., that it is independent of the chosen embedded resolution. Denef and Loeser
proved this by turning the heuristic discussion above into an exact argument, using
`-adic interpolation. An easier and more geometric approach is to use the following
weak factorisation theorem (that was not known in 1991). It reduces the problem
to showing that the defining expression of Ztop(s) is invariant under an admissible
blow-up, which is an easy calculation.

Theorem 7.3 (Weak factorisation theorem, [AKMW][W l1]).

(1) Consider a proper birational map between smooth, irreducible varieties
φ : Y 99K Y ′ and an open set U ⊆ Y such that the restriction of φ to U is
an isomorphism. Then φ can be factored into a sequence of blow-ups and
blow-downs with smooth centres disjoint from U .
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(2) If Y \U and Y ′\φ(U) are normal crossings divisors, then that factorisation
can be chosen such that at each step the images or inverse images of these
divisors are also normal crossings divisors and such that the centres of
blow-up intersect these divisors transversely.

The topological zeta function is an interesting singularity invariant on its own, and
also a useful test case for studying (the poles of) the Igusa zeta function.

Question 7.4. It is a challenging open problem to give an intrinsic definition
of the topological zeta function.

7.2. Motivic zeta function

Kontsevich suggested the idea of motivic integration (an analogue of p-adic
integration) in a lecture at Orsay in 1995. This theory has been further developed
by Denef and Loeser, amongst others. The motivic zeta function is defined as an
analogue of the Igusa zeta function, using motivic integration instead of p-adic
integration.

Definition 7.5 (Grothendieck ring of k-varieties). Let k be any field. The
Grothendieck group of varieties K0(Vark) is the quotient of the free group generated
by the symbols [X], where X runs over all varieties over k, by the relations

[X] = [Y ] if X ∼= Y,

[X \ Y ] + [Y ] = [X] if Y is a closed subvariety of X.

Multiplication determined by

[X] · [Y ] := [X ×k Y ]

turns K0(Vark) into a commutative ring, called the Grothendieck ring of k-varieties.
We denote by L the class of the affine line A1

k and by (K0(Vark))L the localization
of K0(Vark) with respect to L.

The motivic zeta function is defined as an integral over the ‘arc space’ k[[t]]n,
which is the analogue of the space of p-adic integers Znp . It is a power series in the

formal variable T , which is sometimes written as L−s (with a formal s), to stress
the analogy with p−s. That arc space carries a natural motivic measure dµ, with
values in (K0(Vark))L, which is the analogue of the Haar measure on Znp . For a
detailed explanation, we refer to [DL2] and [DL3].

Definition 7.6 (Motivic zeta function). Let k be a field of characteristic zero
and f ∈ k[x1, . . . , xn]. The associated motivic zeta function is a formal power series
over (K0(Vark))L in the variable T = L−s, given by the motivic integral

Zmot(f ; s) = Z ′mot(f ;T ) :=

∫
k[[t]]n

(L−s)ordtf(x)dµ.

More concretely, define

Xi =

{
γ ∈

(
k[[t]]

(ti+1)

)n
| ordtfi(γ) = i

}
,

where fi : (k[[t]]/(ti+1))
n → k[[t]]/(ti+1) is the natural extension of ′f : kn → k, and

for γ ∈ k[[t]]/(ti+1) we denote by ordt(γ) ∈ {0, 1, . . . , i,+∞} the highest power of t
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that divides γ. Then we have

Zmot(f ; s) =
1

Ln
∑
i≥0

[Xi]L−in−is.

In order to see also the analogy of this expression with the Igusa zeta function,
verify that, for f ∈ Qp[x1, . . . , xn], we have

Zp(f ; s) =
1

pn

∑
i≥0

]

({
a ∈

(
Zp

(pi+1)

)n
| ordpf(a) = i

})
p−in−is.

The following table compares the notions related to the Igusa zeta function
with those related to the motivic zeta function.

Igusa zeta function Motivic zeta function

f ∈ Z[x1, . . . , xn] f ∈ k[x1, . . . , xn]

Mi = {number of solutions
of f = 0 over Z/piZ}

Mi is the class of
{solutions of f = 0 over k[t]/(ti)} in

K0(Vark)

P (T ) :=
∑
i≥0Mi(p

−nT )i
P(T ) :=

∑
i≥0Mi(L−nT )i ∈

K0(Vark)L[[T ]]

Zp = lim←−i
Z/piZ k[[t]] = lim←−i

k[t]/(ti)

Zp(f ; s) :=
∫
Znp

(p−s)ordpf(x)|dx| Zmot(f ; s) :=
∫
k[[t]]n

(L−s)ordtf(x)dµ

P (T ) Zp(f ; s) P(T ) Zmot(f ; s)

With the last line, we mean that Zmot(f ; s) is related to P(T ), similarly as in
Proposition 2.8 for the p-adic case.

Theorem 7.7 (Denef-Loeser [DL2]). Let k be a field of characteristic zero and
f ∈ k[x1, . . . , xn] \ k. Consider an embedded resolution h : Y → Ank of f as in

Theorem 4.1, and put again E̊J = (
⋂
j∈J Ej) \ (

⋃
k 6∈J)Ek for J ⊆ I. Then

Zmot(f ; s) =
1

Ln
∑
J⊆I

[E̊J ]
∏
i∈J

L− 1

LNis+νi − 1
.

In particular, this implies that Zmot(s) and P(T ) are rational functions in T = L−s.

Remark 7.8 ([DL2]).

(1) When k = C, the motivic zeta function Zmot(f ; s) specialises to the topo-
logical zeta function Ztop(f ; s). This gives a new proof that Ztop(f ; s) is
independent of the chosen resolution.

(2) When k = Q, the motivic zeta function Zmot(f ; s) specialises to the Igusa
zeta functions Zp(f ; s) for all but finitely many p.

Question 7.9. Take again f ∈ Z[x1, . . . , xn] and fix a prime number p. Define

M ′i := ]

{
solutions of f = 0 in

(
Fp[u]

(ui)

)n}
.
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Define P ′(T ) :=
∑
i≥0M

′
i(p
−nT )i. It is an open problem whether P ′(T ) is a

rational function in T .

Remark 7.10. For a given f ∈ Z[x1, . . . , xn], it is known that P ′(T ) = P (T )
for all large enough p.

8. MISCELLANEOUS

We briefly indicate some generalisations and problems that are not treated here.

8.1. Number fields

Everything discussed before generalises to number fields in the following way.
Let F be a number field with ring of integers O, and fix a maximal ideal p of O.
Instead of counting solutions of f ∈ Z[x1, . . . , xn] in (Z/pkZ)

n
, we count solutions of

f ∈ O[x1, . . . , xn] in (O/pkO)
n
.

Q Z prime p

number field F ring of integers O maximal ideal p

Similarly, Qp and Zp can be replaced by a finite extension K of Qp and its valuation
ring R.

Qp Zp

finite field extension K valuation ring R

The corresponding Igusa zeta function in this setting is (the meromorphic contin-
uation of)

∫
Rn |f(x)|sp |dx|.

8.2. Contribution and non-contribution when n ≥ 3

For polynomials in n = 2 variables, the determination of the poles of the
associated Igusa zeta function Z(s) is well-understood, as discussed in Section 6.
However, as soon as n is at least 3, this is an open problem. For some partial results
concerning non-contribution of candidate poles, mainly for n = 3, we refer to [Ve3]
and [Ve6]. For some contribution results in arbitrary dimension, see [Ro].

8.3. Congruences of multiple polynomials

Instead of counting the solutions of a single polynomial, one can generalise this
to studying congruences of several polynomials. More precisely, given polynomials
f1, . . . , fr ∈ Z[x1, . . . , xn] and a fixed prime number p, define Mi = {a ∈ (Z/piZ)

n |
fk(a) ≡ 0 mod pi for all k = 1, . . . , r} for i ∈ Z≥0. Once again, the goal is the
understand/compute these numbers. In this setting there is also a corresponding
Igusa zeta function Z(s), related to the generating Poincaré series of the Mi; it is
defined as

Z(s) :=

∫
Znp

(max
i
|fi|p)s|dx|,

where maxi | · |p is the usual norm on Qrp. For results in this setting we refer to
[VZ1].
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8.4. Monodromy conjecture

One of the most intriguing conjectures in singularity theory is the monodromy
conjecture. Given f ∈ Q[x1, . . . , xn], it relates the poles of its associated p-adic Igusa
zeta functions (for all but finitely many p), which are number theoretic invariants
of f , to eigenvalues of local monodromy of f , which are geometric/topological
invariants of f , considered as function on Cn. A variant is also considered for the
topological and motivic zeta functions. See for example [Ni] for an introduction to
this topic.
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3 (1969), 84–85.
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[VZ1] Veys W. and Zúñiga-Galindo W. Zeta functions for polynomial mappings, log-

principalization of ideals, and Newton polyhedra, Trans. Amer. Math. Soc. 360 (2008), 2205–
2227.
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