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Formal languages in discrete groups

When a finitely generated group is given by a presentation
hXkRi we work with sequences of symbols (words) over the
finite alphabet X [ X

�1 (assuming X \ X

�1 = ;).
Sets of words are called formal languages.

Example

Some languages are of general interest in group theory:

word problem:WP(G ) = {wkw =G 1},
coword problem: coWP(G ) = {wkw 6=G 1},
multiplication table:mult(G ) = {(u, v ,w)kuv =G w},
geodesics: geo(G ) = {wk8w 0 : w =G w

0 ) |w |  |w 0|}.
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Chomsky hierarchy of languages

A natural way to understand the complexity of a formal language is
by quantifying the computational strength of a machine that
recognises it.

We say that a machine M accepts language L if some
computation ends up in a accepting state after reading a word
w 2 L.

Machine Memory Language

Finite state automaton N/A Reg
Push-down automaton Push-down stack CF
Linear bounded automaton Linearly bounded tape CS
Turing machine Infinite tape RE
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Groups and Chomsky hierarchy

Some languages in group theory have been classified within
Chomsky hierarchy:

regular (co)word problem i↵ finite (Anisimov),

context-free word problem i↵ virtually free (Muller & Schupp),

context-free multiplication table i↵ hyperbolic (Gilman),

Question

What about totally disconnected locally compact groups?
Is there a computational model?
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An inspiration...

A group is residually finite if for every g 2 G there is N E G of
finite index such that g /2 G .

Theorem

Mal’cev If G = hX | Ri is a finitely presented residually finite

group then G has solvable word problem.

Proof.

Run two algorithms in parallel:

first to enumerate all w 0 2 (X [ X

�1)⇤ such that w =G 1;

second to enumerate all Cay(G/N,X ) where N Ef G ;

Given a word w 2 (X [ X

�1)⇤,

first algorithm will stop if it finds w ,

second algorithm will stop if it finds N E G such that w is not
a label of a closed loop in Cay(G/N,X ).

Exactly one of the algorithms will stop.
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Finite state automaton over X

Definition (X -FSA)

A finite state automaton over a finite alphabet X is a tuple
M = (Q, q

0

,A, �), where

Q is a finite set of states,

q

0

2 Q is the initial state,

; 6= A ✓ Q is the set of accepting states,

� ✓ Q ⇥ X ⇥ Q is the transition relation.

A word w = x

1

. . . xn 2 X

⇤ takes state q to q

0 if there is a
sequence of states q

1

, . . . , qn�1

2 Q such that
(q, x

1

, q
1

), (q
1

, x
2

, q
2

), . . . , (qn�1

, xn, q0) 2 �. Denote
w(q) = {q0 2 Q | w takes q to q

0}.
The machine M accepts word w if w(q

0

) \ A 6= ;. The set of
words accepted by M is denoted as L(M).
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Category of X -FSAs

Definition (morphism of X -FSAs)

Let M = (Q, q
0

,A, �) and M

0 = (Q 0, q0
0

,A0, �0) be X -FSAs. A map
f : Q ! Q

0 is a morphism of X -FSAs if

f (q
0

) = q

0
0

,

f (A) ✓ A

0,

(q
1

, x , q
2

) 2 � ) (f (q
1

), x , f (q
2

)) 2 �0

and we write f : M ! M

0. By definition, L(M) ✓ L(M 0).

We say that a pair of words w ,w 0 is f -compatible if
f (w(q)) ✓ w

0(f (q)) for every q 2 Q.
The set of pairs pair of f -compatible words is closed under
coordinate-wise concatenation.
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Inverse limit of X -FSAs

Definition (Profinite state automaton over X )

Let (I ,) be a directed poset and let

MI = ((Mi )i2I , (fi ,j : Mj ! Mi )ij)

be a directed system of X -FSAs indexed by I , i.e. i  j  k

implies that fi ,k = fi ,j � fj ,k .
We say M̂I = lim �Mi is a profinite state automaton.

The automaton works with sequences of words

ŴI = {(wi )i2I | the pair (wj ,wi ) is fi ,j compatible whenever i  j}.

We say that M̂I accepts w 2 ŴI if Mi accepts wi for every i 2 I .
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Profinite state automata from profinite groups

Lemma

If G = hX i is a finitely generated profinite group then there is a

profinite-state-automaton over X that accepts sequences of words

in X converging to the identity.

Proof.

Suppose that G = lim �Gi .

Then interpret Cay(Gi ,X ) as an X -FSA Mi and set M̂I = lim �Mi .

Obviously, M̂I accepts w 2 ŴI if and only if w represents the
identity in G
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Obviously, M̂I accepts w 2 ŴI if and only if w represents the
identity in G

Michal Ferov Inverse limits of finite state automata



Profinite groups from profinite state automata

Lemma

Let G = hX i be a finitely generated group and let M̂I = lim �Mi

what accepts w 2 ŴI if and only if w represents a Cauchy

sequence converging to the identity. Then G is a profinite group,

in particular G = lim �Gi .

Proof.

For every i 2 I can construct a X -FSA M

0
i and a morphism

fi : Mi ! M

0
i such that L(M) = L(M 0) and M

0
i
⇠= Cay(Gi ,X ) as a

decorated graph.
Start at the bottom and consistently work your way upwards.
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That’s all for now

Questions?

Thank you!
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