Inverse limits of finite state automata

Michal Ferov

University of Technology, Sydney

Trees, dynamics and locally compact groups Düsseldorf, Germany June 29, 2018

Formal languages in discrete groups

- When a finitely generated group is given by a presentation $\langle X || R \rangle$ we work with sequences of symbols (words) over the finite alphabet $X \cup X^{-1}$ (assuming $X \cap X^{-1} = \emptyset$).
- Sets of words are called *formal languages*.

Formal languages in discrete groups

- When a finitely generated group is given by a presentation ⟨X||R⟩ we work with sequences of symbols (words) over the finite alphabet X ∪ X⁻¹ (assuming X ∩ X⁻¹ = Ø).
- Sets of words are called *formal languages*.

Example

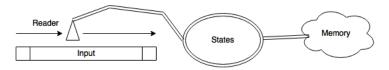
Some languages are of general interest in group theory:

word problem:
$$WP(G) = \{w || w =_G 1\},\$$

coword problem: $coWP(G) = \{w || w \neq_G 1\},\$
multiplication table: $mult(G) = \{(u, v, w) || uv =_G w\},\$
geodesics: $geo(G) = \{w || \forall w' : w =_G w' \Rightarrow |w| \leq |w'|\}.$

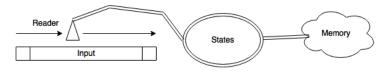
Chomsky hierarchy of languages

A natural way to understand the complexity of a formal language is by quantifying the computational strength of a machine that recognises it.



Chomsky hierarchy of languages

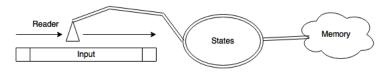
A natural way to understand the complexity of a formal language is by quantifying the computational strength of a machine that recognises it.



 We say that a machine *M* accepts language *L* if some computation ends up in a accepting state after reading a word *w* ∈ *L*.

Chomsky hierarchy of languages

A natural way to understand the complexity of a formal language is by quantifying the computational strength of a machine that recognises it.



 We say that a machine *M* accepts language *L* if some computation ends up in a accepting state after reading a word *w* ∈ *L*.

Machine	Memory	Language
Finite state automaton	N/A	Reg
Push-down automaton	Push-down stack	CF
Linear bounded automaton	Linearly bounded tape	CS
Turing machine	Infinite tape	RE E E E O

Some languages in group theory have been classified within Chomsky hierarchy:

- regular (co)word problem iff finite (Anisimov),
- context-free word problem iff virtually free (Muller & Schupp),
- context-free multiplication table iff hyperbolic (Gilman),

Some languages in group theory have been classified within Chomsky hierarchy:

- regular (co)word problem iff finite (Anisimov),
- context-free word problem iff virtually free (Muller & Schupp),
- context-free multiplication table iff hyperbolic (Gilman),

Question

What about totally disconnected locally compact groups? Is there a computational model?

An inspiration...

A group is residually finite if for every $g \in G$ there is $N \trianglelefteq G$ of finite index such that $g \notin G$.

Theorem

Mal'cev If $G = \langle X | R \rangle$ is a finitely presented residually finite group then G has solvable word problem.

An inspiration...

A group is residually finite if for every $g \in G$ there is $N \trianglelefteq G$ of finite index such that $g \notin G$.

Theorem

Mal'cev If $G = \langle X | R \rangle$ is a finitely presented residually finite group then G has solvable word problem.

Proof.

Run two algorithms in parallel:

- first to enumerate all $w' \in (X \cup X^{-1})^*$ such that $w =_G 1$;
- second to enumerate all Cay(G/N, X) where $N \leq_f G$;

An inspiration...

A group is residually finite if for every $g \in G$ there is $N \trianglelefteq G$ of finite index such that $g \notin G$.

Theorem

Mal'cev If $G = \langle X | R \rangle$ is a finitely presented residually finite group then G has solvable word problem.

Proof.

Run two algorithms in parallel:

- first to enumerate all $w' \in (X \cup X^{-1})^*$ such that $w =_G 1$;
- second to enumerate all Cay(G/N, X) where $N \leq_f G$;

Given a word $w \in (X \cup X^{-1})^*$,

- first algorithm will stop if it finds w,
- second algorithm will stop if it finds $N \leq G$ such that w is not a label of a closed loop in Cay(G/N, X).

Exactly one of the algorithms will stop.

Definition (X-FSA)

A finite state automaton over a finite alphabet X is a tuple $M = (Q, q_0, A, \delta)$, where

- Q is a finite set of states,
- $q_0 \in Q$ is the initial state,
- $\emptyset \neq A \subseteq Q$ is the set of accepting states,
- $\delta \subseteq Q \times X \times Q$ is the transition relation.

Definition (X-FSA)

A finite state automaton over a finite alphabet X is a tuple $M = (Q, q_0, A, \delta)$, where

- Q is a finite set of states,
- $q_0 \in Q$ is the initial state,
- $\emptyset \neq A \subseteq Q$ is the set of accepting states,
- $\delta \subseteq Q \times X \times Q$ is the transition relation.

A word $w = x_1 \dots x_n \in X^*$ takes state q to q' if there is a sequence of states $q_1, \dots, q_{n-1} \in Q$ such that $(q, x_1, q_1), (q_1, x_2, q_2), \dots, (q_{n-1}, x_n, q') \in \delta$. Denote $w(q) = \{q' \in Q \mid w \text{ takes } q \text{ to } q'\}.$

Definition (X-FSA)

A finite state automaton over a finite alphabet X is a tuple $M = (Q, q_0, A, \delta)$, where

- Q is a finite set of states,
- $q_0 \in Q$ is the initial state,
- $\emptyset \neq A \subseteq Q$ is the set of accepting states,
- $\delta \subseteq Q \times X \times Q$ is the transition relation.

A word $w = x_1 \dots x_n \in X^*$ takes state q to q' if there is a sequence of states $q_1, \dots, q_{n-1} \in Q$ such that $(q, x_1, q_1), (q_1, x_2, q_2), \dots, (q_{n-1}, x_n, q') \in \delta$. Denote $w(q) = \{q' \in Q \mid w \text{ takes } q \text{ to } q'\}$. The machine M accepts word w if $w(q_0) \cap A \neq \emptyset$. The set of words accepted by M is denoted as L(M).

Definition (morphism of X-FSAs)

Let $M = (Q, q_0, A, \delta)$ and $M' = (Q', q'_0, A', \delta')$ be X-FSAs. A map $f: Q \rightarrow Q'$ is a morphism of X-FSAs if

- $f(q_0) = q'_0$,
- $f(A) \subseteq A'$,
- $(q_1, x, q_2) \in \delta \Rightarrow (f(q_1), x, f(q_2)) \in \delta'$

and we write $f: M \to M'$. By definition, $L(M) \subseteq L(M')$.

We say that a pair of words w, w' is *f*-compatible if $f(w(q)) \subseteq w'(f(q))$ for every $q \in Q$. The set of pairs pair of *f*-compatible words is closed under coordinate-wise concatenation.

Definition (Profinite state automaton over X)

Let (I, \leq) be a directed poset and let

$$\mathcal{M}_I = ((M_i)_{i \in I}, (f_{i,j} \colon M_j \to M_i)_{i \leq j})$$

be a directed system of X-FSAs indexed by I, i.e. $i \leq j \leq k$ implies that $f_{i,k} = f_{i,j} \circ f_{j,k}$. We say $\hat{M}_I = \varprojlim M_i$ is a profinite state automaton.

The automaton works with sequences of words

 $\hat{W}_I = \{(w_i)_{i \in I} \mid \text{the pair } (w_j, w_i) \text{ is } f_{i,j} \text{ compatible whenever } i \leq j\}.$

We say that \hat{M}_{I} accepts $w \in \hat{W}_{I}$ if M_{i} accepts w_{i} for every $i \in I$.

If $G = \overline{\langle X \rangle}$ is a finitely generated profinite group then there is a profinite-state-automaton over X that accepts sequences of words in X converging to the identity.

If $G = \overline{\langle X \rangle}$ is a finitely generated profinite group then there is a profinite-state-automaton over X that accepts sequences of words in X converging to the identity.

Proof.

Suppose that $G = \varprojlim G_i$. Then interpret $Cay(G_i, X)$ as an X-FSA M_i and set $\hat{M}_I = \varprojlim M_i$. Obviously, \hat{M}_I accepts $w \in \hat{W}_I$ if and only if w represents the identity in G

Let $G = \overline{\langle X \rangle}$ be a finitely generated group and let $\hat{M}_I = \varprojlim M_i$ what accepts $w \in \hat{W}_I$ if and only if w represents a Cauchy sequence converging to the identity. Then G is a profinite group, in particular $G = \varprojlim G_i$.

Let $G = \overline{\langle X \rangle}$ be a finitely generated group and let $\hat{M}_I = \varprojlim M_i$ what accepts $w \in \hat{W}_I$ if and only if w represents a Cauchy sequence converging to the identity. Then G is a profinite group, in particular $G = \varprojlim G_i$.

Proof.

For every $i \in I$ can construct a X-FSA M'_i and a morphism $f_i \colon M_i \to M'_i$ such that L(M) = L(M') and $M'_i \cong Cay(G_i, X)$ as a decorated graph.

Let $G = \overline{\langle X \rangle}$ be a finitely generated group and let $\hat{M}_I = \varprojlim M_i$ what accepts $w \in \hat{W}_I$ if and only if w represents a Cauchy sequence converging to the identity. Then G is a profinite group, in particular $G = \varprojlim G_i$.

Proof.

For every $i \in I$ can construct a X-FSA M'_i and a morphism $f_i: M_i \to M'_i$ such that L(M) = L(M') and $M'_i \cong Cay(G_i, X)$ as a decorated graph.

Start at the bottom and consistently work your way upwards.

Questions?

Questions?

Thank you!

Michal Ferov Inverse limits of finite state automata