Grigorchuk-Gupta-Sidki groups as a source for Beauville surfaces

Şükran Gül

University of the Basque Country, Bilbao, Spain

Joint work with Jone Uria-Albizuri (Basque Center for Applied Mathematics, Bilbao, Spain)

> Trees, dynamics and locally compact groups Düsseldorf, June 25-29, 2018

Contents

🚺 Background material

- Definitions
- Known results on Beauville groups

Origorchuk-Gupta-Sidki groups

- Definitions
- Main results

Beauville surfaces and groups

(i)
$$C_i/G \cong \mathbb{P}_1(\mathbb{C})$$
 for $i = 1, 2$.

Beauville surfaces and groups

Definition

A Beauville surface of unmixed type is a compact complex surface which is the quotient of a product $C_1 \times C_2$ of two algebraic curves C_1 and C_2 of genera at least 2 by the action of a finite group G acting freely by holomorphic transformations, in such a way that:

(i)
$$C_i/G \cong \mathbb{P}_1(\mathbb{C})$$
 for $i = 1, 2$.

(ii) The covering map $C_i \rightarrow C_i/G$ is ramified over three points for i = 1, 2.

Beauville surfaces and groups

Definition

A Beauville surface of unmixed type is a compact complex surface which is the quotient of a product $C_1 \times C_2$ of two algebraic curves C_1 and C_2 of genera at least 2 by the action of a finite group G acting freely by holomorphic transformations, in such a way that:

(i)
$$C_i/G \cong \mathbb{P}_1(\mathbb{C})$$
 for $i = 1, 2$.

(ii) The covering map $C_i \rightarrow C_i/G$ is ramified over three points for i = 1, 2.

The group G is then called a Beauville group of unmixed type.

Beauville surfaces and groups

Definition

A Beauville surface of unmixed type is a compact complex surface which is the quotient of a product $C_1 \times C_2$ of two algebraic curves C_1 and C_2 of genera at least 2 by the action of a finite group G acting freely by holomorphic transformations, in such a way that:

(i)
$$C_i/G \cong \mathbb{P}_1(\mathbb{C})$$
 for $i = 1, 2$.

(ii) The covering map $C_i \rightarrow C_i/G$ is ramified over three points for i = 1, 2.

The group G is then called a Beauville group of unmixed type.

Question: Which finite groups are Beauville groups?

Group-theoretical reformulation

Let G be a group. For every $x, y \in G$, we define

$$\Sigma(x,y) = \bigcup_{g \in G} (\langle x \rangle^g \cup \langle y \rangle^g \cup \langle xy \rangle^g).$$

Group-theoretical reformulation

Let G be a group. For every $x, y \in G$, we define

$$\Sigma(x,y) = \bigcup_{g \in G} (\langle x \rangle^g \cup \langle y \rangle^g \cup \langle xy \rangle^g).$$

Theorem (Bauer, Catanese, Grunewald)

A finite group G is a Beauville group if and only if

Group-theoretical reformulation

Let G be a group. For every $x, y \in G$, we define

$$\Sigma(x,y) = \bigcup_{g \in G} (\langle x \rangle^g \cup \langle y \rangle^g \cup \langle xy \rangle^g).$$

Theorem (Bauer, Catanese, Grunewald)

A finite group G is a Beauville group if and only if

- (i) G is a 2-generator group.
- (ii) G has two sets of generators, $\{x_1, y_1\}$ and $\{x_2, y_2\}$, such that

$$\Sigma(x_1,y_1)\cap \Sigma(x_2,y_2)=1.$$

Group-theoretical reformulation

Let G be a group. For every $x, y \in G$, we define

$$\Sigma(x,y) = \bigcup_{g \in G} (\langle x \rangle^g \cup \langle y \rangle^g \cup \langle xy \rangle^g).$$

Theorem (Bauer, Catanese, Grunewald)

A finite group G is a Beauville group if and only if

- (i) G is a 2-generator group.
- (ii) G has two sets of generators, $\{x_1, y_1\}$ and $\{x_2, y_2\}$, such that

$$\Sigma(x_1,y_1)\cap \Sigma(x_2,y_2)=1.$$

Definition

We say that $\{x_1, y_1\}$ and $\{x_2, y_2\}$ form a Beauville structure for G.

Sükran Gül

In the sequel, all groups will be finite and p will always be a prime.

Theorem (Catanese, 2000)

An abelian group is a Beauville group if and only if it is isomorphic to $C_n \times C_n$, where n > 1 and gcd(n, 6) = 1.

Corollary

There are no abelian Beauville 2-groups or 3-groups.

Theorem (Bauer, Catanese, Grunewald, 2005; Fuertes, González-Diez, 2009)

In the sequel, all groups will be finite and p will always be a prime.

Theorem (Catanese, 2000)

An abelian group is a Beauville group if and only if it is isomorphic to $C_n \times C_n$, where n > 1 and gcd(n, 6) = 1.

Corollary

There are no abelian Beauville 2-groups or 3-groups.

Theorem (Bauer, Catanese, Grunewald, 2005; Fuertes, González-Diez, 2009)

In the sequel, all groups will be finite and p will always be a prime.

Theorem (Catanese, 2000)

An abelian group is a Beauville group if and only if it is isomorphic to $C_n \times C_n$, where n > 1 and gcd(n, 6) = 1.

Corollary

There are no abelian Beauville 2-groups or 3-groups.

Theorem (Bauer, Catanese, Grunewald, 2005; Fuertes, González-Diez, 2009)

In the sequel, all groups will be finite and p will always be a prime.

Theorem (Catanese, 2000)

An abelian group is a Beauville group if and only if it is isomorphic to $C_n \times C_n$, where n > 1 and gcd(n, 6) = 1.

Corollary

There are no abelian Beauville 2-groups or 3-groups.

Theorem (Bauer, Catanese, Grunewald, 2005; Fuertes, González-Diez, 2009)

Theorem (Bauer, Catanese, Grunewald, 2005) The groups SL(2, p), PSL(2, p), for $p \neq 2, 3, 5$, are Beauville groups.

Theorem (Fuertes, Jones, 2011)

The groups SL(2, q), PSL(2, q), for all prime powers q > 5, are Beauville groups.

Theorem (Guralnick, Malle, 2012)

Any non-abelian finite simple group other than A_5 is a Beauville group.

Theorem (Bauer, Catanese, Grunewald, 2005) The groups SL(2, p), PSL(2, p), for $p \neq 2, 3, 5$, are Beauville groups.

Theorem (Fuertes, Jones, 2011)

The groups SL(2, q), PSL(2, q), for all prime powers q > 5, are Beauville groups.

Theorem (Guralnick, Malle, 2012)

Any non-abelian finite simple group other than A_5 is a Beauville group.

Theorem (Bauer, Catanese, Grunewald, 2005) The groups SL(2, p), PSL(2, p), for $p \neq 2, 3, 5$, are Beauville groups.

Theorem (Fuertes, Jones, 2011)

The groups SL(2, q), PSL(2, q), for all prime powers q > 5, are Beauville groups.

Theorem (Guralnick, Malle, 2012)

Any non-abelian finite simple group other than A_5 is a Beauville group.

Known results: *p*-groups

- After abelian groups, the most natural class of finite groups to consider are nilpotent groups.
- The study of nilpotent Beauville groups is reduced to that of Beauville *p*-groups [Barker, Boston, Fairbairn, 2012].

Barker, Boston, Fairbairn (2012)

- The smallest non-abelian Beauville *p*-groups for p = 2 and p = 3 are of order 2^7 and 3^5 .
- For $p \ge 5$, the smallest non-abelian Beauville *p*-group is of order p^3 .

Known results: *p*-groups

- After abelian groups, the most natural class of finite groups to consider are nilpotent groups.
- The study of nilpotent Beauville groups is reduced to that of Beauville *p*-groups [Barker, Boston, Fairbairn, 2012].

Barker, Boston, Fairbairn (2012)

- The smallest non-abelian Beauville *p*-groups for *p* = 2 and *p* = 3 are of order 2⁷ and 3⁵.
- For $p \ge 5$, the smallest non-abelian Beauville *p*-group is of order p^3 .

Known results: infinite families of Beauville *p*-groups

Theorem (Barker, Boston, Fairbairn, 2012)

There are non-abelian Beauville p-groups of order p^n for every $p \ge 5$ and $n \ge 3$.

Theorem (Barker, Boston, Peyerimhoff, Vdovina, 2015) *There are infinitely many Beauville* 2-*groups.*

Theorem (Stix, Vdovina, 2015)

For every prime p, there are infinitely many quotients of the ordinary triangle group

$$\Delta_{m,n,r} = \langle x, y \mid x^{p^m} = y^{p^n} = (xy)^{p^r} = 1 \rangle$$

which are Beauville p-groups.

Known results: infinite families of Beauville *p*-groups

Theorem (Barker, Boston, Fairbairn, 2012)

There are non-abelian Beauville p-groups of order p^n for every $p \ge 5$ and $n \ge 3$.

Theorem (Barker, Boston, Peyerimhoff, Vdovina, 2015) There are infinitely many Beauville 2-groups.

Theorem (Stix, Vdovina, 2015)

For every prime p, there are infinitely many quotients of the ordinary triangle group

$$\Delta_{m,n,r} = \langle x, y \mid x^{p^m} = y^{p^n} = (xy)^{p^r} = 1 \rangle$$

which are Beauville p-groups.

Known results: infinite families of Beauville *p*-groups

Theorem (Barker, Boston, Fairbairn, 2012)

There are non-abelian Beauville p-groups of order p^n for every $p \ge 5$ and $n \ge 3$.

Theorem (Barker, Boston, Peyerimhoff, Vdovina, 2015) There are infinitely many Beauville 2-groups.

Theorem (Stix, Vdovina, 2015)

For every prime p, there are infinitely many quotients of the ordinary triangle group

$$\Delta_{m,n,r} = \langle x, y \mid x^{p^m} = y^{p^n} = (xy)^{p^r} = 1 \rangle$$

which are Beauville p-groups.

Known results: Beauville structures in *p*-central quotients

For any group G, the normal series

$$G = \lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G) \ge \ldots$$

given by $\lambda_n(G) = [\lambda_{n-1}(G), G]\lambda_{n-1}(G)^p$ for n > 1 is called the *p*-central series of *G*.

Conjecture (Boston):

If $p \ge 5$ and F is either

- the free group $\langle x, y \rangle$ or
- the free product $\langle x, y \mid x^p, y^p \rangle$,

then the *p*-central quotients $F/\lambda_n(F)$ are Beauville groups.

Known results: Beauville structures in *p*-central quotients

For any group G, the normal series

$$G = \lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G) \ge \ldots$$

given by $\lambda_n(G) = [\lambda_{n-1}(G), G]\lambda_{n-1}(G)^p$ for n > 1 is called the *p*-central series of *G*.

Conjecture (Boston):

If $p \ge 5$ and F is either

- the free group $\langle x, y \rangle$ or
- the free product $\langle x, y \mid x^p, y^p \rangle$,

then the *p*-central quotients $F/\lambda_n(F)$ are Beauville groups.

Known results: Beauville structures in *p*-central quotients

For any group G, the normal series

$$G = \lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G) \ge \ldots$$

given by $\lambda_n(G) = [\lambda_{n-1}(G), G]\lambda_{n-1}(G)^p$ for n > 1 is called the *p*-central series of *G*.

Conjecture (Boston):

If $p \ge 5$ and F is either

• the free group $\langle x, y \rangle$ or

• the free product $\langle x, y \mid x^p, y^p \rangle$,

then the *p*-central quotients $F/\lambda_n(F)$ are Beauville groups.

Theorem (\$G, 2016) Let $F = \langle x, y \rangle$ be the free group. Then

 $F/\lambda_n(F)$ is a Beauville group $\iff p \ge 5$ and $n \ge 2$.

Theorem (ŞG, 2016)

Let $F = \langle x, y \mid x^p, y^p \rangle$ be the free product of two cyclic groups order p. Then

 $F/\lambda_n(F)$ is a Beauville group $\iff p \ge 5$ and $n \ge 2$ or p = 3 and $n \ge 4$.

Theorem (\$G, 2016) Let $F = \langle x, y \rangle$ be the free group. Then $F/\lambda_n(F)$ is a Beauville group $\iff p \ge 5$ and $n \ge 2$.

Theorem (\$G, 2016)

Let $F = \langle x, y \mid x^p, y^p \rangle$ be the free product of two cyclic groups order p. Then

 $F/\lambda_n(F)$ is a Beauville group $\iff p \ge 5$ and $n \ge 2$ or p = 3 and $n \ge 4$.

The Nottingham group \mathcal{N} is the group of normalized automorphisms of the ring $\mathbb{F}_p[[t]]$ of formal power series for a prime p. Namely,

$$\mathcal{N} = \{ f \in \operatorname{Aut} \mathbb{F}_p[[t]] \mid f(t) \equiv t \pmod{t^2} \}.$$

If $\mathcal{N}_i = \{f \in \mathcal{N} \mid f(t) \equiv t \pmod{t^{i+1}}\}$, then $\mathcal{N}_i \leq \mathcal{N}$ for all $i \geq 1$. Notation: $z_m = p^m + p^{m-1} + \dots + 2$ for $m \geq 1$, $z_0 = 2$.

- If p ≥ 5 then all quotients N/N_i with i ≥ 3 are Beauville groups, except for those of the form i = z_m.
- If p = 3 then all quotients N/N_i with i ≥ 6 are Beauville groups, except for those of the form i = z_m.

The Nottingham group \mathcal{N} is the group of normalized automorphisms of the ring $\mathbb{F}_p[[t]]$ of formal power series for a prime p. Namely,

$$\mathcal{N} = \{ f \in \operatorname{Aut} \mathbb{F}_p[[t]] \mid f(t) \equiv t \pmod{t^2} \}.$$

If $\mathcal{N}_i = \{f \in \mathcal{N} \mid f(t) \equiv t \pmod{t^{i+1}}\}$, then $\mathcal{N}_i \leq \mathcal{N}$ for all $i \geq 1$. Notation: $z_m = p^m + p^{m-1} + \dots + 2$ for $m \geq 1$, $z_0 = 2$.

- If p ≥ 5 then all quotients N/N_i with i ≥ 3 are Beauville groups, except for those of the form i = z_m.
- If p = 3 then all quotients N/N_i with i ≥ 6 are Beauville groups, except for those of the form i = z_m.

The Nottingham group \mathcal{N} is the group of normalized automorphisms of the ring $\mathbb{F}_p[[t]]$ of formal power series for a prime p. Namely,

$$\mathcal{N} = \{ f \in \operatorname{Aut} \mathbb{F}_{\rho}[[t]] \mid f(t) \equiv t \pmod{t^2} \}.$$

If $\mathcal{N}_i = \{f \in \mathcal{N} \mid f(t) \equiv t \pmod{t^{i+1}}\}$, then $\mathcal{N}_i \trianglelefteq \mathcal{N}$ for all $i \ge 1$. Notation: $z_m = p^m + p^{m-1} + \dots + 2$ for $m \ge 1$, $z_0 = 2$.

- If p ≥ 5 then all quotients N/N_i with i ≥ 3 are Beauville groups, except for those of the form i = z_m.
- If p = 3 then all quotients N/N_i with i ≥ 6 are Beauville groups, except for those of the form i = z_m.

The Nottingham group \mathcal{N} is the group of normalized automorphisms of the ring $\mathbb{F}_p[[t]]$ of formal power series for a prime p. Namely,

$$\mathcal{N} = \{ f \in \operatorname{Aut} \mathbb{F}_{\rho}[[t]] \mid f(t) \equiv t \pmod{t^2} \}.$$

If
$$\mathcal{N}_i = \{f \in \mathcal{N} \mid f(t) \equiv t \pmod{t^{i+1}}\}$$
, then $\mathcal{N}_i \trianglelefteq \mathcal{N}$ for all $i \ge 1$.
Notation: $z_m = p^m + p^{m-1} + \dots + 2$ for $m \ge 1$, $z_0 = 2$.

- If p ≥ 5 then all quotients N/N_i with i ≥ 3 are Beauville groups, except for those of the form i = z_m.
- If p = 3 then all quotients N/N_i with i ≥ 6 are Beauville groups, except for those of the form i = z_m.

The Nottingham group \mathcal{N} is the group of normalized automorphisms of the ring $\mathbb{F}_p[[t]]$ of formal power series for a prime p. Namely,

$$\mathcal{N} = \{ f \in \operatorname{Aut} \mathbb{F}_{\rho}[[t]] \mid f(t) \equiv t \pmod{t^2} \}.$$

If
$$\mathcal{N}_i = \{ f \in \mathcal{N} \mid f(t) \equiv t \pmod{t^{i+1}} \}$$
, then $\mathcal{N}_i \trianglelefteq \mathcal{N}$ for all $i \ge 1$.
Notation: $z_m = p^m + p^{m-1} + \dots + 2$ for $m \ge 1$, $z_0 = 2$.

- If p ≥ 5 then all quotients N/N_i with i ≥ 3 are Beauville groups, except for those of the form i = z_m.
- If p = 3 then all quotients N/N_i with i ≥ 6 are Beauville groups, except for those of the form i = z_m.

Ø Grigorchuk-Gupta-Sidki groups

 $\mathcal{T} = p$ -adic tree: a tree with root \emptyset such that every vertex has p 'children' for a prime p.

 L_n = vertices at distance *n* from the root.

Aut \mathcal{T} = the group of automorphisms of \mathcal{T} .

(an automorphism of $\ensuremath{\mathcal{T}}$ is a bijection of the vertices that preserves incidence.)

 $st(n) = \{f \in Aut \mathcal{T} \mid f(u) = u \; \forall u \in L_n\}$ is the *n*th level stabilizer.

If $G \leq \operatorname{Aut} \mathcal{T}$ then $\operatorname{st}_G(n) = \operatorname{st}(n) \cap G$, and $\operatorname{st}_G(n) \trianglelefteq G$.

$\mathcal{T} = p$ -adic tree: a tree with root \emptyset such that every vertex has p 'children' for a prime p.

 L_n = vertices at distance *n* from the root.

Aut $\mathcal{T} =$ the group of automorphisms of \mathcal{T} .

(an automorphism of ${\mathcal T}$ is a bijection of the vertices that preserves incidence.)

 $st(n) = \{f \in Aut \mathcal{T} \mid f(u) = u \; \forall u \in L_n\}$ is the *n*th level stabilizer.

If $G \leq \operatorname{Aut} \mathcal{T}$ then $\operatorname{st}_G(n) = \operatorname{st}(n) \cap G$, and $\operatorname{st}_G(n) \trianglelefteq G$.

 $\mathcal{T} = p$ -adic tree: a tree with root \emptyset such that every vertex has p 'children' for a prime p.

L_n = vertices at distance *n* from the root.

Aut \mathcal{T} = the group of automorphisms of \mathcal{T} .

(an automorphism of ${\mathcal T}$ is a bijection of the vertices that preserves incidence.)

 $st(n) = \{f \in Aut \mathcal{T} \mid f(u) = u \; \forall u \in L_n\}$ is the *n*th level stabilizer.

If $G \leq \operatorname{Aut} \mathcal{T}$ then $\operatorname{st}_G(n) = \operatorname{st}(n) \cap G$, and $\operatorname{st}_G(n) \trianglelefteq G$.

Definitions

 $\mathcal{T} = p$ -adic tree: a tree with root \emptyset such that every vertex has p 'children' for a prime p.

 L_n = vertices at distance *n* from the root.

Aut \mathcal{T} = the group of automorphisms of \mathcal{T} .

(an automorphism of ${\mathcal T}$ is a bijection of the vertices that preserves incidence.)

 $st(n) = \{f \in Aut \mathcal{T} \mid f(u) = u \; \forall u \in L_n\}$ is the *n*th level stabilizer.

If $G \leq \operatorname{Aut} \mathcal{T}$ then $\operatorname{st}_G(n) = \operatorname{st}(n) \cap G$, and $\operatorname{st}_G(n) \trianglelefteq G$.

Definitions

 $\mathcal{T} = p$ -adic tree: a tree with root \emptyset such that every vertex has p 'children' for a prime p.

 L_n = vertices at distance *n* from the root.

Aut \mathcal{T} = the group of automorphisms of \mathcal{T} .

(an automorphism of ${\mathcal T}$ is a bijection of the vertices that preserves incidence.)

 $st(n) = \{ f \in Aut \mathcal{T} \mid f(u) = u \; \forall u \in L_n \}$ is the *n*th level stabilizer.

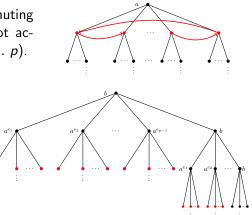
If $G \leq \operatorname{Aut} \mathcal{T}$ then $\operatorname{st}_G(n) = \operatorname{st}(n) \cap G$, and $\operatorname{st}_G(n) \trianglelefteq G$.

Definitions

GGS-groups

a= a rooted automorphism permuting the vertices hanging from the root according to the permutation $(12 \dots p)$.

b = an automorphism in st(1) acting on p main subtrees as $a^{e_1}, a^{e_2}, \ldots, a^{e_{p-1}}, b$ according to a given non-zero vector $e = (e_1, \ldots, e_{p-1}) \in \mathbb{F}_p^{p-1}.$



Definition

 $G = \langle a, b \rangle \leq \operatorname{Aut} \mathcal{T}$ is called the *Grigorchuk-Gupta-Sidki group* (GGS-group for short) corresponding to the *defining vector* e.

Sükran Gül

- If G is a GGS-group, then the quotients G/st_G(n) are finite p-groups generated by two elements order p.
- If p = 2 then there is only one GGS-group, which is isomorphic to the infinite dihedral group D_{∞} . No finite quotient of D_{∞} is a Beauville group [Bauer, Catanese, Grunewald, 2005].
- In the remainder, we assume that *p* is an odd prime.
- G is a periodic group if and only if $\sum_{i=1}^{p-1} e_i = 0$ [Vovkivsky, 2000].
- The property of being Beauville for the quotients $G/\operatorname{st}_G(n)$ depends on whether G is periodic or not.

- If G is a GGS-group, then the quotients G/st_G(n) are finite p-groups generated by two elements order p.
- If p = 2 then there is only one GGS-group, which is isomorphic to the infinite dihedral group D_{∞} . No finite quotient of D_{∞} is a Beauville group [Bauer, Catanese, Grunewald, 2005].
- In the remainder, we assume that *p* is an odd prime.
- G is a periodic group if and only if $\sum_{i=1}^{p-1} e_i = 0$ [Vovkivsky, 2000].
- The property of being Beauville for the quotients $G/\operatorname{st}_G(n)$ depends on whether G is periodic or not.

- If G is a GGS-group, then the quotients G/st_G(n) are finite p-groups generated by two elements order p.
- If p = 2 then there is only one GGS-group, which is isomorphic to the infinite dihedral group D_{∞} . No finite quotient of D_{∞} is a Beauville group [Bauer, Catanese, Grunewald, 2005].
- In the remainder, we assume that *p* is an odd prime.
- G is a periodic group if and only if $\sum_{i=1}^{p-1} e_i = 0$ [Vovkivsky, 2000].
- The property of being Beauville for the quotients $G/\operatorname{st}_G(n)$ depends on whether G is periodic or not.

- If G is a GGS-group, then the quotients G/st_G(n) are finite p-groups generated by two elements order p.
- If p = 2 then there is only one GGS-group, which is isomorphic to the infinite dihedral group D_{∞} . No finite quotient of D_{∞} is a Beauville group [Bauer, Catanese, Grunewald, 2005].
- In the remainder, we assume that *p* is an odd prime.
- G is a periodic group if and only if $\sum_{i=1}^{p-1} e_i = 0$ [Vovkivsky, 2000].
- The property of being Beauville for the quotients $G/\operatorname{st}_G(n)$ depends on whether G is periodic or not.

- If G is a GGS-group, then the quotients G/st_G(n) are finite p-groups generated by two elements order p.
- If p = 2 then there is only one GGS-group, which is isomorphic to the infinite dihedral group D_{∞} . No finite quotient of D_{∞} is a Beauville group [Bauer, Catanese, Grunewald, 2005].
- In the remainder, we assume that *p* is an odd prime.
- G is a periodic group if and only if $\sum_{i=1}^{p-1} e_i = 0$ [Vovkivsky, 2000].
- The property of being Beauville for the quotients $G/\operatorname{st}_G(n)$ depends on whether G is periodic or not.

- If G is a GGS-group, then the quotients G/st_G(n) are finite p-groups generated by two elements order p.
- If p = 2 then there is only one GGS-group, which is isomorphic to the infinite dihedral group D_{∞} . No finite quotient of D_{∞} is a Beauville group [Bauer, Catanese, Grunewald, 2005].
- In the remainder, we assume that *p* is an odd prime.
- G is a periodic group if and only if $\sum_{i=1}^{p-1} e_i = 0$ [Vovkivsky, 2000].
- The property of being Beauville for the quotients $G/\operatorname{st}_G(n)$ depends on whether G is periodic or not.

Let G be non-periodic GGS-group.

For every $n \ge 2$, the quotient $G_n = G/\operatorname{st}_G(n)$ have p+1 maximal subgroups:

 $\langle a, G'_n \rangle$, $\langle b, G'_n \rangle$, and $M_{n,i} = \langle ab^i, G'_n \rangle$ for every $1 \le i \le p-1$.

Proposition [\$G, Uria-Albizuri, 2018]

All elements in M_{n,i} \ G'_n are of order pⁿ for every 1 ≤ i ≤ p − 1.
 For any g, h ∈ U^{p−1}_{i=1} M_{n,i} \ G'_n,

$$\langle g^{p^{n-1}}\rangle = \langle h^{p^{n-1}}\rangle.$$

Theorem [ŞG, Uria-Albizuri, 2018]

Let G be a non-periodic GGS-group over the p-adic tree. Then the quotient $G/\operatorname{st}_G(n)$ is not a Beauville group for any $n \ge 1$.

Şükran Gül

GGS-groups as a source for Beauville surfaces

16 / 19

Let G be non-periodic GGS-group.

For every $n \ge 2$, the quotient $G_n = G/\operatorname{st}_G(n)$ have p+1 maximal subgroups:

 $\langle a, G'_n \rangle$, $\langle b, G'_n \rangle$, and $M_{n,i} = \langle ab^i, G'_n \rangle$ for every $1 \le i \le p-1$.

Proposition [\$G, Uria-Albizuri, 2018]

All elements in M_{n,i} \ G'_n are of order pⁿ for every 1 ≤ i ≤ p − 1.
 For any g, h ∈ U^{p−1}_{i=1} M_{n,i} \ G'_n,

$$\langle g^{p^{n-1}}\rangle = \langle h^{p^{n-1}}\rangle.$$

Theorem [ŞG, Uria-Albizuri, 2018]

Let G be a non-periodic GGS-group over the p-adic tree. Then the quotient $G/\operatorname{st}_G(n)$ is not a Beauville group for any $n \ge 1$.

Şükran Gül

GGS-groups as a source for Beauville surfaces

Let G be non-periodic GGS-group.

For every $n \ge 2$, the quotient $G_n = G/\operatorname{st}_G(n)$ have p+1 maximal subgroups:

$$\langle a, G'_n \rangle$$
, $\langle b, G'_n \rangle$, and $M_{n,i} = \langle ab^i, G'_n \rangle$ for every $1 \le i \le p-1$.

Proposition [\$G, Uria-Albizuri, 2018]

All elements in M_{n,i} \sqrt{G'_n} are of order pⁿ for every 1 ≤ i ≤ p − 1.
For any g, h ∈ ∪^{p−1}_{i=1} M_{n,i} \sqrt{G'_n},

$$\langle g^{p^{n-1}} \rangle = \langle h^{p^{n-1}} \rangle.$$

Theorem [ŞG, Uria-Albizuri, 2018]

Let G be a non-periodic GGS-group over the p-adic tree. Then the quotient $G/\operatorname{st}_G(n)$ is not a Beauville group for any $n \ge 1$.

Şükran Gül

GGS-groups as a source for Beauville surfaces

16 / 19

Let G be non-periodic GGS-group.

For every $n \ge 2$, the quotient $G_n = G/\operatorname{st}_G(n)$ have p+1 maximal subgroups:

$$\langle a, G'_n \rangle$$
, $\langle b, G'_n \rangle$, and $M_{n,i} = \langle ab^i, G'_n \rangle$ for every $1 \le i \le p-1$.

Proposition [\$G, Uria-Albizuri, 2018]

All elements in M_{n,i} \ G'_n are of order pⁿ for every 1 ≤ i ≤ p − 1.
For any g, h ∈ U^{p−1}_{i=1} M_{n,i} \ G'_n,

$$\langle g^{p^{n-1}} \rangle = \langle h^{p^{n-1}} \rangle.$$

Theorem [ŞG, Uria-Albizuri, 2018]

Let G be a non-periodic GGS-group over the p-adic tree. Then the quotient $G/\operatorname{st}_G(n)$ is not a Beauville group for any $n \ge 1$.

Şükran Gül

GGS-groups as a source for Beauville surfaces

Let G be non-periodic GGS-group.

For every $n \ge 2$, the quotient $G_n = G/\operatorname{st}_G(n)$ have p+1 maximal subgroups:

$$\langle a, G'_n \rangle$$
, $\langle b, G'_n \rangle$, and $M_{n,i} = \langle ab^i, G'_n \rangle$ for every $1 \le i \le p-1$.

Proposition [\$G, Uria-Albizuri, 2018]

All elements in M_{n,i} \ G'_n are of order pⁿ for every 1 ≤ i ≤ p − 1.
 For any g, h ∈ U^{p−1}_{i=1} M_{n,i} \ G'_n,

$$\langle g^{p^{n-1}} \rangle = \langle h^{p^{n-1}} \rangle.$$

Theorem [\$G, Uria-Albizuri, 2018]

Let G be a non-periodic GGS-group over the p-adic tree. Then the quotient $G/\operatorname{st}_G(n)$ is not a Beauville group for any $n \ge 1$.

Şükran Gül

Theorem

```
Let G be a periodic GGS-group. Then
```

 $G/\operatorname{st}_G(2)$ is a Beauville group $\iff p \ge 5$.

Theorem

Let G be a periodic GGS-group. Then $G/\operatorname{st}_G(3)$ is a Beauville group. Furthermore,

- if $p \ge 5$ then $\{a^{-2}, ab\}$ and $\{ab^2, b\}$,
- if p = 3 then {a, b} and {av, b²u}, where u and v are elements of order 3 with some property,

form a Beauville structure for $G/\operatorname{st}_G(3)$.

Theorem

Let G be a periodic GGS-group. Then

 $G/\operatorname{st}_G(2)$ is a Beauville group $\iff p \ge 5$.

Theorem

Let G be a periodic GGS-group. Then $G/\operatorname{st}_G(3)$ is a Beauville group. Furthermore,

- if $p \ge 5$ then $\{a^{-2}, ab\}$ and $\{ab^2, b\}$,
- if p = 3 then {a, b} and {av, b²u}, where u and v are elements of order 3 with some property,

form a Beauville structure for $G/\operatorname{st}_G(3)$.

Theorem

Let G be a periodic GGS-group. Then

 $G/\operatorname{st}_G(2)$ is a Beauville group $\iff p \geq 5$.

Theorem

Let G be a periodic GGS-group. Then $G/\operatorname{st}_G(3)$ is a Beauville group. Furthermore,

- if $p \ge 5$ then $\{a^{-2}, ab\}$ and $\{ab^2, b\}$,
- if p = 3 then {a, b} and {av, b²u}, where u and v are elements of order 3 with some property,

form a Beauville structure for $G/\operatorname{st}_G(3)$.

Theorem

Let G be a periodic GGS-group. Then

 $G/\operatorname{st}_G(2)$ is a Beauville group $\iff p \geq 5$.

Theorem

Let G be a periodic GGS-group. Then $G/\operatorname{st}_G(3)$ is a Beauville group. Furthermore,

- if $p \ge 5$ then $\{a^{-2}, ab\}$ and $\{ab^2, b\}$,
- if p = 3 then {a, b} and {av, b²u}, where u and v are elements of order 3 with some property,

form a Beauville structure for $G/\operatorname{st}_G(3)$.

Theorem

Let G be a periodic GGS-group. Then

 $G/\operatorname{st}_G(2)$ is a Beauville group $\iff p \geq 5$.

Theorem

Let G be a periodic GGS-group. Then $G/\operatorname{st}_G(3)$ is a Beauville group. Furthermore,

- if $p \ge 5$ then $\{a^{-2}, ab\}$ and $\{ab^2, b\}$,
- if p = 3 then {a, b} and {av, b²u}, where u and v are elements of order 3 with some property,

form a Beauville structure for $G/\operatorname{st}_G(3)$.

Main results

Periodic case – lifting Beauville structures

Proposition (Fuertes, Jones, 2011)

Let G be a finite group and let $\{x_1, y_1\}$ and $\{x_2, y_2\}$ be two sets of generators of G. Assume that, for a given $N \trianglelefteq G$, the following hold: $\{x_1N, y_1N\}$ and $\{x_2N, y_2N\}$ form a Beauville structure for G/N.

2
$$o(g) = o(gN)$$
 for every $g \in \{x_1, y_1, x_1y_1\}$.

Then $\{x_1, y_1\}$ and $\{x_2, y_2\}$ form a Beauville structure for G.

Main results

Periodic case – lifting Beauville structures

Proposition (Fuertes, Jones, 2011)

Let G be a finite group and let $\{x_1, y_1\}$ and $\{x_2, y_2\}$ be two sets of generators of G. Assume that, for a given $N \trianglelefteq G$, the following hold:

 $\{x_1N, y_1N\}$ and $\{x_2N, y_2N\}$ form a Beauville structure for G/N.

2
$$o(g) = o(gN)$$
 for every $g \in \{x_1, y_1, x_1y_1\}$.

Then $\{x_1, y_1\}$ and $\{x_2, y_2\}$ form a Beauville structure for G.

Theorem [\$G, Uria-Albizuri, 2018]

Let G be a periodic GGS-group over the p-adic tree. Then the quotient $G/\operatorname{st}_G(n)$ is a Beauville group if $p \ge 5$ and $n \ge 2$, or p = 3 and $n \ge 3$.

Main results

Periodic case – lifting Beauville structures

Proposition (Fuertes, Jones, 2011)

Let G be a finite group and let $\{x_1, y_1\}$ and $\{x_2, y_2\}$ be two sets of generators of G. Assume that, for a given $N \trianglelefteq G$, the following hold:

 $\{x_1N, y_1N\}$ and $\{x_2N, y_2N\}$ form a Beauville structure for G/N.

2
$$o(g) = o(gN)$$
 for every $g \in \{x_1, y_1, x_1y_1\}$.

Then $\{x_1, y_1\}$ and $\{x_2, y_2\}$ form a Beauville structure for G.

Theorem [\$G, Uria-Albizuri, 2018]

Let G be a periodic GGS-group over the p-adic tree. Then the quotient $G/\operatorname{st}_G(n)$ is a Beauville group if $p \ge 5$ and $n \ge 2$, or p = 3 and $n \ge 3$.

Thus, a periodic GGS-group is a source for the construction of an infinite series of Beauville p-groups.

THANK YOU