Some properties of group actions on zero-dimensional spaces

Colin D. Reid

University of Newcastle, Australia

Trees, dynamics and locally compact groups, HHU Düsseldorf, June 2018

Let X be a locally compact Hausdorff topological space and write $\mathcal{CO}(X)$ for the set of compact open subsets of X. Suppose that X is **zero-dimensional**, meaning that $\mathcal{CO}(X)$ forms a base for the topology.

Let $S \subseteq \operatorname{Homeo}(X)$, such that $\operatorname{id}_X \in S$, $S = S^{-1}$ and $\{sU \mid s \in S\}$ is finite for every $U \in \mathcal{CO}(X)$. Let S^n be the set of products of at most n elements of S, and let $G = S^{\infty} = \langle S \rangle$.

Fix some $U \in CO(X)$. Write $U_0 = U$;

for $n \in (0, +\infty]$, $U_n = \bigcap_{g \in S^n} gU$ and $U_{-n} = \bigcup_{g \in S^n} gU$.

Let X be a locally compact Hausdorff topological space and write $\mathcal{CO}(X)$ for the set of compact open subsets of X. Suppose that X is **zero-dimensional**, meaning that $\mathcal{CO}(X)$ forms a base for the topology.

Let $S \subseteq \operatorname{Homeo}(X)$, such that $\operatorname{id}_X \in S$, $S = S^{-1}$ and $\{sU \mid s \in S\}$ is finite for every $U \in \mathcal{CO}(X)$. Let S^n be the set of products of at most n elements of S, and let $G = S^{\infty} = \langle S \rangle$.

Fix some $U \in CO(X)$. Write $U_0 = U$;

for
$$n\in (0,+\infty],\ U_n=\bigcap_{g\in S^n}gU$$
 and $U_{-n}=\bigcup_{g\in S^n}gU.$

Let X be a locally compact Hausdorff topological space and write $\mathcal{CO}(X)$ for the set of compact open subsets of X. Suppose that X is **zero-dimensional**, meaning that $\mathcal{CO}(X)$ forms a base for the topology.

Let $S \subseteq \operatorname{Homeo}(X)$, such that $\operatorname{id}_X \in S$, $S = S^{-1}$ and $\{sU \mid s \in S\}$ is finite for every $U \in \mathcal{CO}(X)$. Let S^n be the set of products of at most n elements of S, and let $G = S^{\infty} = \langle S \rangle$.

Fix some $U \in \mathcal{CO}(X)$. Write $U_0 = U$;

for
$$n \in (0, +\infty]$$
, $U_n = \bigcap_{g \in S^n} gU$ and $U_{-n} = \bigcup_{g \in S^n} gU$.

- (i) There exist a, b ∈ [-∞, +∞] with a ≤ 0 ≤ b such that U_a = U_{-∞}, U_b = U_∞ and W_m is nonempty exactly when m ∈ [a, b).
- (ii) Every *G*-orbit intersecting $U_n \setminus U_{+\infty}$ also intersects W_m for all $m \in [a, n]$.
- (iii) There is a *G*-orbit *Gx* that intersects all of the nonempty shells.

- (i) There exist $a, b \in [-\infty, +\infty]$ with $a \le 0 \le b$ such that $U_a = U_{-\infty}$, $U_b = U_{\infty}$ and W_m is nonempty exactly when $m \in [a, b)$.
- (ii) Every *G*-orbit intersecting $U_n \setminus U_{+\infty}$ also intersects W_m for all $m \in [a, n]$.
- (iii) There is a *G*-orbit *Gx* that intersects all of the nonempty shells.

- (i) There exist $a, b \in [-\infty, +\infty]$ with $a \le 0 \le b$ such that $U_a = U_{-\infty}$, $U_b = U_{\infty}$ and W_m is nonempty exactly when $m \in [a, b)$.
- (ii) Every *G*-orbit intersecting $U_n \setminus U_{+\infty}$ also intersects W_m for all $m \in [a, n]$.
- (iii) There is a *G*-orbit *Gx* that intersects all of the nonempty shells.

- (i) There exist $a, b \in [-\infty, +\infty]$ with $a \le 0 \le b$ such that $U_a = U_{-\infty}$, $U_b = U_{\infty}$ and W_m is nonempty exactly when $m \in [a, b)$.
- (ii) Every *G*-orbit intersecting $U_n \setminus U_{+\infty}$ also intersects W_m for all $m \in [a, n]$.
- (iii) There is a *G*-orbit *Gx* that intersects all of the nonempty shells.

Proof

(i) Suppose for some $b \ge 0$ that $W_b = \emptyset$, i.e. $U_b = U_{b+1}$, and let $m \ge 0$. Then

$$U_{b+m} = \bigcap_{g \in S^m} gU_b = \bigcap_{g \in S^m} gU_{b+1} = U_{b+m+1}.$$

Hence $U_{b+1} = U_{b+2} = \cdots = U_{+\infty}$. The proof in the negative direction is similar.

(ii) Let $x \in U_n \setminus U_{+\infty}$. Then $x \in W_{n'}$ for some $n' \geq n$, and hence there exists $g \in S$ such that $gx \notin U_{n'}$ (otherwise we would have $x \in U_{n'+1}$), but $gx \in U_{n'-1}$ (since $x \in U_{n'}$). Thus $gx \in W_{n'-1}$. Repeat to get images of x in W_m for all $m \leq n'$.

Proof

(i) Suppose for some $b \ge 0$ that $W_b = \emptyset$, i.e. $U_b = U_{b+1}$, and let $m \ge 0$. Then

$$U_{b+m} = \bigcap_{g \in S^m} gU_b = \bigcap_{g \in S^m} gU_{b+1} = U_{b+m+1}.$$

Hence $U_{b+1} = U_{b+2} = \cdots = U_{+\infty}$. The proof in the negative direction is similar.

(ii) Let $x \in U_n \setminus U_{+\infty}$. Then $x \in W_{n'}$ for some $n' \geq n$, and hence there exists $g \in S$ such that $gx \notin U_{n'}$ (otherwise we would have $x \in U_{n'+1}$), but $gx \in U_{n'-1}$ (since $x \in U_{n'}$). Thus $gx \in W_{n'-1}$. Repeat to get images of x in W_m for all $m \leq n'$.

(iii) Define $P_n = (\bigcup_{g \in S^n} g^{-1} U_n) \setminus U_1$. Then P_n is a compact subset of U. Let I be the set of $n \ge 0$ such that $W_n \ne \emptyset$. Given part (ii) it is enough to show $\bigcap_{n \in I} P_n \ne \emptyset$.

Suppose $x \in P_n$. Then $\exists g \in S, h \in S^{n-1} : ghx \in U_n$, so $hx \in U_{n-1}$ and hence $x \in P_{n-1}$. Thus $(P_n)_{n \in I}$ is a descending sequence.

Suppose $\bigcap_{n\in I} P_n = \emptyset$. Then by compactness $P_n = \emptyset$ for some $n \in I$, that is, $g^{-1}U_n \subseteq U_1$ for all $g \in S^n$. But then $U_n \subseteq \bigcap_{g \in S^n} gU_1 = U_{n+1}$, so $W_n = \emptyset$, contradicting the choice of n.

(iii) Define $P_n = (\bigcup_{g \in S^n} g^{-1} U_n) \setminus U_1$. Then P_n is a compact subset of U. Let I be the set of $n \ge 0$ such that $W_n \ne \emptyset$. Given part (ii) it is enough to show $\bigcap_{n \in I} P_n \ne \emptyset$.

Suppose $x \in P_n$. Then $\exists g \in S, h \in S^{n-1} : ghx \in U_n$, so $hx \in U_{n-1}$ and hence $x \in P_{n-1}$. Thus $(P_n)_{n \in I}$ is a descending sequence.

Suppose $\bigcap_{n\in I} P_n = \emptyset$. Then by compactness $P_n = \emptyset$ for some $n \in I$, that is, $g^{-1}U_n \subseteq U_1$ for all $g \in S^n$. But then $U_n \subseteq \bigcap_{g \in S^n} gU_1 = U_{n+1}$, so $W_n = \emptyset$, contradicting the choice of n.

(iii) Define $P_n = (\bigcup_{g \in S^n} g^{-1} U_n) \setminus U_1$. Then P_n is a compact subset of U. Let I be the set of $n \ge 0$ such that $W_n \ne \emptyset$. Given part (ii) it is enough to show $\bigcap_{n \in I} P_n \ne \emptyset$.

Suppose $x \in P_n$. Then $\exists g \in S, h \in S^{n-1} : ghx \in U_n$, so $hx \in U_{n-1}$ and hence $x \in P_{n-1}$. Thus $(P_n)_{n \in I}$ is a descending sequence.

Suppose $\bigcap_{n\in I} P_n = \emptyset$. Then by compactness $P_n = \emptyset$ for some $n \in I$, that is, $g^{-1}U_n \subseteq U_1$ for all $g \in S^n$. But then $U_n \subseteq \bigcap_{g \in S^n} gU_1 = U_{n+1}$, so $W_n = \emptyset$, contradicting the choice of n.

Alternative incarnation of (iii) (think of G = X acting by conjugation on itself, and U a vertex stabilizer):

Lemma/Corollary

Let Γ be a connected locally finite graph and let G be a closed vertex-transitive group of automorphisms of Γ . Then exactly one of the following holds:

- (i) There is a finite set v_1, \ldots, v_n of vertices, such that $\bigcap_{i=1}^n G_{v_i} = \{1\}.$
- (ii) There is a horoball H in Γ, such that the pointwise fixator of H in G is nontrivial.

Here we define a **horoball** to be a set of the form $\{v \in V\Gamma : \exists n : d(v, v_n) \leq n\}$, where $(v_n)_{n\geq 0}$ is a set of vertices forming a geodesic ray.

Alternative incarnation of (iii) (think of G = X acting by conjugation on itself, and U a vertex stabilizer):

Lemma/Corollary

Let Γ be a connected locally finite graph and let G be a closed vertex-transitive group of automorphisms of Γ . Then exactly one of the following holds:

- (i) There is a finite set v_1, \ldots, v_n of vertices, such that $\bigcap_{i=1}^n G_{v_i} = \{1\}.$
- (ii) There is a horoball H in Γ , such that the pointwise fixator of H in G is nontrivial.

Here we define a **horoball** to be a set of the form $\{v \in V\Gamma : \exists n : d(v, v_n) \leq n\}$, where $(v_n)_{n\geq 0}$ is a set of vertices forming a geodesic ray.

Theorem (Auslander–Glasner–Weiss; R.)

- (i) Given $x \in U$ and $y \in U_{+\infty}$ such that $y \in \overline{Gx}$, then $x \in \overline{Gy}$.
- (ii) For all $V \in \mathcal{CO}(U)$, there is a finite subset F of G such that $V_{+\infty} = \bigcap_{g \in F} gV$.
- (iii) U_{∞} is open and there is a G-invariant quotient map $\phi: U_{+\infty} \to Y$, such that G acts trivially on Y and minimally on each fibre of ϕ .

Theorem (Auslander–Glasner–Weiss; R.)

- (i) Given $x \in U$ and $y \in U_{+\infty}$ such that $y \in \overline{Gx}$, then $x \in \overline{Gy}$.
- (ii) For all $V \in \mathcal{CO}(U)$, there is a finite subset F of G such that $V_{+\infty} = \bigcap_{g \in F} gV$.
- (iii) U_{∞} is open and there is a G-invariant quotient map $\phi: U_{+\infty} \to Y$, such that G acts trivially on Y and minimally on each fibre of ϕ .

Theorem (Auslander–Glasner–Weiss; R.)

- (i) Given $x \in U$ and $y \in U_{+\infty}$ such that $y \in \overline{Gx}$, then $x \in \overline{Gy}$.
- (ii) For all $V \in \mathcal{CO}(U)$, there is a finite subset F of G such that $V_{+\infty} = \bigcap_{g \in F} gV$.
- (iii) U_{∞} is open and there is a G-invariant quotient map $\phi: U_{+\infty} \to Y$, such that G acts trivially on Y and minimally on each fibre of ϕ .

Theorem (Auslander–Glasner–Weiss; R.)

- (i) Given $x \in U$ and $y \in U_{+\infty}$ such that $y \in \overline{Gx}$, then $x \in \overline{Gy}$.
- (ii) For all $V \in \mathcal{CO}(U)$, there is a finite subset F of G such that $V_{+\infty} = \bigcap_{g \in F} gV$.
- (iii) U_{∞} is open and there is a G-invariant quotient map $\phi: U_{+\infty} \to Y$, such that G acts trivially on Y and minimally on each fibre of ϕ .

Distal action: if $(g_ix, g_iy) \to (z, z)$ as $i \to \infty$, then x = y. In particular, if \overline{Gy} is compact and $y \in \overline{Gx}$, then $\overline{Gx} = \overline{Gy}$.

Corollary

Suppose that G acts distally on X and that every orbit has compact closure. Then $\{gV\mid g\in G\}$ is finite for every $V\in\mathcal{CO}(X)$. In particular, the action of G is equicontinuous.

(If X is the Cantor set, then $G \leq \text{Homeo}(X)$ acts equicontinuously if and only if there is a compatible G-invariant metric on X, or equivalently X is the boundary of some locally finite rooted tree on which G acts by automorphisms.)

Distal action: if $(g_ix, g_iy) \to (z, z)$ as $i \to \infty$, then x = y. In particular, if \overline{Gy} is compact and $y \in \overline{Gx}$, then $\overline{Gx} = \overline{Gy}$.

Corollary

Suppose that G acts distally on X and that every orbit has compact closure. Then $\{gV \mid g \in G\}$ is finite for every $V \in \mathcal{CO}(X)$. In particular, the action of G is equicontinuous.

(If X is the Cantor set, then $G \leq \text{Homeo}(X)$ acts equicontinuously if and only if there is a compatible G-invariant metric on X, or equivalently X is the boundary of some locally finite rooted tree on which G acts by automorphisms.)

Distal action: if $(g_ix, g_iy) \to (z, z)$ as $i \to \infty$, then x = y. In particular, if \overline{Gy} is compact and $y \in \overline{Gx}$, then $\overline{Gx} = \overline{Gy}$.

Corollary

Suppose that G acts distally on X and that every orbit has compact closure. Then $\{gV \mid g \in G\}$ is finite for every $V \in \mathcal{CO}(X)$. In particular, the action of G is equicontinuous.

(If X is the Cantor set, then $G \leq \operatorname{Homeo}(X)$ acts equicontinuously if and only if there is a compatible G-invariant metric on X, or equivalently X is the boundary of some locally finite rooted tree on which G acts by automorphisms.)

A locally compact group G is **distal** (as a topological group) if it acts distally on itself by conjugation; equivalently, no conjugacy class of G accumulates at the identity. For example: nilpotent groups; discrete groups; compact groups; any residually distal group is distal.

t.d.l.c. group = "totally disconnected locally compact group".
T.d.l.c. groups are zero-dimensional; in fact the cosets of compact open subgroups form a base for the topology (Van Dantzig).

Corollary (Willis; Caprace-Monod; R.)

Let G be a compactly generated t.d.l.c. group. Then G is distal if and only if the cosets of open *normal* subgroups of G form a base for the topology.

A locally compact group G is **distal** (as a topological group) if it acts distally on itself by conjugation; equivalently, no conjugacy class of G accumulates at the identity. For example: nilpotent groups; discrete groups; compact groups; any residually distal group is distal.

t.d.l.c. group = "totally disconnected locally compact group". T.d.l.c. groups are zero-dimensional; in fact the cosets of compact open *subgroups* form a base for the topology (Van Dantzig).

Corollary (Willis; Caprace-Monod; R.)

Let *G* be a compactly generated t.d.l.c. group. Then *G* is distal if and only if the cosets of open *normal* subgroups of *G* form a base for the topology.

A locally compact group *G* is **distal** (as a topological group) if it acts distally on itself by conjugation; equivalently, no conjugacy class of *G* accumulates at the identity. For example: nilpotent groups; discrete groups; compact groups; any residually distal group is distal.

t.d.l.c. group = "totally disconnected locally compact group". T.d.l.c. groups are zero-dimensional; in fact the cosets of compact open *subgroups* form a base for the topology (Van Dantzig).

Corollary (Willis; Caprace–Monod; R.)

Let G be a compactly generated t.d.l.c. group. Then G is distal if and only if the cosets of open *normal* subgroups of G form a base for the topology.

Proposition (Caprace-Monod; R.-Wesolek)

Let G be a compactly generated t.d.l.c. group and let U be a compact open subgroup of G.

- (i) Let $(K_i)_{i\in\mathbb{N}}$ be a sequence of closed normal subgroups such that $K_i \to \{1\}$ as $i \to \infty$. Then for i large enough, $K_i \cap U$ is normal in G.
- (ii) Suppose that $\bigcap_{g \in G} gUg^{-1} = \{1\}$ and that G has no nontrivial discrete normal subgroup. Then every nontrivial closed normal subgroup of G contains a minimal one.

Proposition (Caprace–Monod; R.–Wesolek)

Let G be a compactly generated t.d.l.c. group and let U be a compact open subgroup of G.

- (i) Let $(K_i)_{i\in\mathbb{N}}$ be a sequence of closed normal subgroups such that $K_i \to \{1\}$ as $i \to \infty$. Then for i large enough, $K_i \cap U$ is normal in G.
- (ii) Suppose that $\bigcap_{g \in G} gUg^{-1} = \{1\}$ and that G has no nontrivial discrete normal subgroup. Then every nontrivial closed normal subgroup of G contains a minimal one.

Let G be a t.d.l.c. group and let H be a compactly generated group of automorphisms of G. Write $Res_G(H)$ for the intersection of all open H-invariant subgroups of G.

Theorem (R.)

- (i) There is an H-invariant open subgroup of the form VRes_G(H) for some compact open subgroup V of G. Moreover, Res_G(H) is normal in VRes_G(H).
- (ii) There is no proper H-invariant open subgroup of $Res_G(H)$. In particular, $Res_G(H)$ is discrete if and only if it is trivial.

Let G be a t.d.l.c. group and let H be a compactly generated group of automorphisms of G. Write $Res_G(H)$ for the intersection of all open H-invariant subgroups of G.

Theorem (R.)

- (i) There is an H-invariant open subgroup of the form VRes_G(H) for some compact open subgroup V of G. Moreover, Res_G(H) is normal in VRes_G(H).
- (ii) There is no proper H-invariant open subgroup of $Res_G(H)$. In particular, $Res_G(H)$ is discrete if and only if it is trivial.

Let G be a t.d.l.c. group and let H be a compactly generated group of automorphisms of G. Write $Res_G(H)$ for the intersection of all open H-invariant subgroups of G.

Theorem (R.)

- (i) There is an H-invariant open subgroup of the form VRes_G(H) for some compact open subgroup V of G. Moreover, Res_G(H) is normal in VRes_G(H).
- (ii) There is no proper H-invariant open subgroup of $\operatorname{Res}_G(H)$. In particular, $\operatorname{Res}_G(H)$ is discrete if and only if it is trivial.

Let G be a group acting faithfully on a space X, and given $Y \subseteq X$, write $\mathrm{rist}_G(Y)$ for the set of elements that fix $X \setminus Y$ pointwise. The action is **micro-supported** if $\mathrm{rist}_G(Y) \neq \{1\}$ for every nonempty open Y.

Theorem (Caprace-R.-Willis)

Let G be a compactly generated t.d.l.c. group with faithful continuous action by homeomorphisms on the Cantor set X. Suppose that G has a compact open subgroup U, such that U is micro-supported on X and $\bigcap_{g \in G} gUg^{-1} = \{1\}$. Then there is a partition of X into clopen sets B_1, \ldots, B_n such that for every $A \in \mathcal{CO}(X) \setminus \{\emptyset\}$, there is $g \in G$ and $1 \le i \le n$ such that $B_i \subseteq gA$.

If *G* is topologically simple, then the action is also minimal, and consequently *G* is not amenable.

Let G be a group acting faithfully on a space X, and given $Y \subseteq X$, write $\mathrm{rist}_G(Y)$ for the set of elements that fix $X \setminus Y$ pointwise. The action is **micro-supported** if $\mathrm{rist}_G(Y) \neq \{1\}$ for every nonempty open Y.

Theorem (Caprace-R.-Willis)

Let G be a compactly generated t.d.l.c. group with faithful continuous action by homeomorphisms on the Cantor set X. Suppose that G has a compact open subgroup U, such that U is micro-supported on X and $\bigcap_{g \in G} gUg^{-1} = \{1\}$. Then there is a partition of X into clopen sets B_1, \ldots, B_n such that for every $A \in \mathcal{CO}(X) \setminus \{\emptyset\}$, there is $g \in G$ and $1 \le i \le n$ such that $B_i \subseteq gA$.

If *G* is topologically simple, then the action is also minimal, and consequently *G* is not amenable.

Let G be a group acting faithfully on a space X, and given $Y \subseteq X$, write $\mathrm{rist}_G(Y)$ for the set of elements that fix $X \setminus Y$ pointwise. The action is **micro-supported** if $\mathrm{rist}_G(Y) \neq \{1\}$ for every nonempty open Y.

Theorem (Caprace–R.–Willis)

Let G be a compactly generated t.d.l.c. group with faithful continuous action by homeomorphisms on the Cantor set X. Suppose that G has a compact open subgroup U, such that U is micro-supported on X and $\bigcap_{g \in G} gUg^{-1} = \{1\}$. Then there is a partition of X into clopen sets B_1, \ldots, B_n such that for every $A \in \mathcal{CO}(X) \setminus \{\emptyset\}$, there is $g \in G$ and $1 \le i \le n$ such that $B_i \subseteq gA$.

If *G* is topologically simple, then the action is also minimal, and consequently *G* is not amenable.

References:

- J. Auslander, E. Glasner and B. Weiss, On recurrence in zero dimensional flows, Forum Math. 19 (2007), 107–114.
- P.-E. Caprace and N. Monod, Decomposing locally compact groups into simple pieces, Math. Proc. Cambridge Philos. Soc. 150 (2011) 1, 97–128.
- P.-E. Caprace, C. D. Reid and G. A. Willis, Locally normal subgroups of totally disconnected groups. Part I: General theory, Forum Math. Sigma 5 (2017), e11, 76pp.
- C. D. Reid, Equicontinuity, orbit closures and invariant compact open sets for group actions on zero-dimensional spaces, arXiv:1710.00627
- C. D. Reid, Distal actions on coset spaces in totally disconnected, locally compact groups, arXiv:1610.06696
- C. D. Reid and P. R. Wesolek, The essentially chief series of a compactly generated locally compact group, Math. Ann. 370 (2018) 1–2, 841–861.
- G. Willis, Totally disconnected, nilpotent, locally compact groups, Bull. Austral. Math. Soc. (1997), no. 1, 143–146.

