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Growth of a Group

G - group, A - set of generators (finite and closed under inverse)

Definition (Growth)

Growth γG : N ∪ {0} → N ∪ {0} is given by,

γG (n) = |{g ∈ G : g = a1a2 . . . ak , k ≤ n, a1, . . . , ak ∈ A}|

Polynomial Growth Intermediate Growth Exponential Growth

Zd (d ≥ 1), D∞ First Grigorchuk group Fr (r ≥ 2), non elementary

Virtually Nilpotent Gω, G̃ω hyperbolic groups︸ ︷︷ ︸
Sub-exponential

︸ ︷︷ ︸
Super-polynomial
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Some elements in Aut(T2)
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G

First Grigorchuk group [Gri,1980] G = 〈a, b, c , d〉

• Infinite

• 3−generated

• Branch

• Torsion

• Intermediate growth [Gri,1984]

γG (n) ∼ en
α

; where α ≈ 0.7674

en
α

is an upper bound [Bartholdi,1998] and [Muchnik-Pak,2001]
en

α−ε
is a lower bound (for each ε > 0) [Erschler-Zheng,2018].
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G̃

Grigorchuk’s overgroup [Gri,1980] G̃ =
〈
a, b̃, c̃ , d̃

〉

• b̃c̃ = d , c̃ d̃ = b, d̃ b̃ = c

• Contains G as a subgroup

• γG (n) � γG̃ (n)

• 4−generated

• G̃ =
〈
a, b, c, d , x , b̃, c̃ , d̃

〉
• Contains a non - torsion element

• Intermediate growth [Bartholdi-Gri,2000]

• Plays an important role in Yaroslav Vorobets recent work topological
full group on a minimal Cantor system
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Generalization for oracle ω

Let ω ∈ {0, 1, 2}N

0 =

a
a
1

 , 1 =

a
1
a

 , 2 =

1
a
a

 (S)

Write ω = ω1ω2 . . . using (S).
Then bω, cω, dω are given by first, second and third rows, respectively.
Define b̃ω, c̃ω, d̃ω accordingly.

Gω = 〈a, bω, cω, dω〉 , G̃ω =
〈
a, b̃ω, c̃ω, d̃ω

〉
When ω = (012)∞,Gω = G and G̃ω = G̃ .
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Gω - main result

Theorem (Gri,1984)

• If ω is eventually constant, then Gω is of polynomial growth and
hence virtually abelian.

• If ω is not eventually constant, then Gω is of intermediate growth.
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Ω,Ω0,Ω1,Ω2

Ω = {0, 1, 2}N.

Ω0 = Sequences containing 0, 1 and 2 infinitely often - e.g. (012)∞

Ω2 = Eventually constant sequences - e.g. 0120∞

Ω1 = Ω− (Ω0 ∪ Ω2) - e.g. 012(01)∞

Supun T. Samarakoon (TAMU) G̃ω June 29, 2018 10 / 21



Ω,Ω0,Ω1,Ω2

Ω = {0, 1, 2}N.

Ω0 = Sequences containing 0, 1 and 2 infinitely often - e.g. (012)∞

Ω2 = Eventually constant sequences - e.g. 0120∞

Ω1 = Ω− (Ω0 ∪ Ω2) - e.g. 012(01)∞

Supun T. Samarakoon (TAMU) G̃ω June 29, 2018 10 / 21



Ω,Ω0,Ω1,Ω2

Ω = {0, 1, 2}N.

Ω0 = Sequences containing 0, 1 and 2 infinitely often - e.g. (012)∞

Ω2 = Eventually constant sequences - e.g. 0120∞

Ω1 = Ω− (Ω0 ∪ Ω2) - e.g. 012(01)∞

Supun T. Samarakoon (TAMU) G̃ω June 29, 2018 10 / 21



Ω,Ω0,Ω1,Ω2

Ω = {0, 1, 2}N.

Ω0 = Sequences containing 0, 1 and 2 infinitely often - e.g. (012)∞

Ω2 = Eventually constant sequences - e.g. 0120∞

Ω1 = Ω− (Ω0 ∪ Ω2) - e.g. 012(01)∞

Supun T. Samarakoon (TAMU) G̃ω June 29, 2018 10 / 21



StabG̃ω
(3)

g

g0

g00

g000 g001

g01

g010 g011

g1

g10

g100 g101

g11

g110 g111

Strong contraction property

|g000|+ |g001|+ . . .+ |g111| ≤ C |g |+ D for some constant C < 1 and
D ≥ 0.
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sub-exponential growth

Lemma

Let ε > 0, nε ∈ N such that nεε > 5/2. Let n ≥ nε. Let s ∈ N such that ωs

is the first time that the third symbol appears in ω. Let g = W ∈ Dε(n)

represent a word in H̃
(s)
ω . Then,∑

i1,i2,...,is

|gi1i2...is | ≤
(

1− ε

5

)
|g |+ 2s − 1.

ω ∈ Ω0 =⇒ G̃ω has sub-exponential growth.
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Grigorchuk’s Space of Marked Groups

Definition (Mk)

The Grigorchuk’s space of marked groups with k generators,

Mk = {(G ,A) : A is an ordered set of k elements generating G}

together with the topology generated by the metric

d((G1,A1), (G2,A2)) = 2−n

where n is the largest integer such that the balls of radius n centered at
identity of the Cayley graphs of (G1,A1) and (G2,A2) are identical.

(G , {a, b, c, d}) ∈M4

(G̃ , {a, b, c, d , x , b̃, c̃, d̃}) ∈M8
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Grigorchuk’s Space of Marked Groups

Define Ỹ , Ỹ0, Ỹ1, Ỹ2 as subsets of M8,

Ỹ = {(G̃ω, Ãω)}ω∈Ω

Ỹ0 = {(G̃ω, Ãω)}ω∈Ω0

Ỹ1 = {(G̃ω, Ãω)}ω∈Ω1

Ỹ2 = {(G̃ω, Ãω)}ω∈Ω2

Then

Ỹ = Ỹ0

⊔
Ỹ1

⊔
Ỹ2

What is
cl(Ỹ )
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Ỹ2

What is
cl(Ỹ )
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Algorithm for the word problem in G̃ω

Let W be a reduced word of the alphabet {a, bω, cω, dω, xω, b̃ω, c̃ω, d̃ω}.
Algorithm α is,

• |W | = 0 =⇒ W = 1. (positive)

• |W |a ≡ 1 (mod 2) =⇒ W 6= 1. (negative)

• |W | = 1 =⇒ (stop).

• Replace W with reduced W0,W1 and repeat
W

W0 W1
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Modified Overgroup G̃ ]
ω

Definition (G̃ ]
ω)

Modified overgroup G̃ ]
ω is the group generated by involutions which

commutes with each other (except for a]), {a], b]ω, c]ω, d ]ω, x ], b̃]ω, c̃]ω, d̃ ]ω}
where all the relations R] of G̃ ]

ω are exactly the words R of the alphabet
{a, bω, cω, dω, xω, b̃ω, c̃ω, d̃ω} such that R gives positive result when
applied the algorithm α.

Theorem

ω ∈ Ω0 =⇒ G̃ ]
ω = G̃ω

ω ∈ Ω1 ∪ Ω2 =⇒ G̃ ]
ω � G̃ω with non trivial kernel.

Theorem

ω(n) → ω ⇐⇒ G̃ ]

ω(n) → G̃ ]
ω

Supun T. Samarakoon (TAMU) G̃ω June 29, 2018 17 / 21



Modified Overgroup G̃ ]
ω

Definition (G̃ ]
ω)

Modified overgroup G̃ ]
ω is the group generated by involutions which

commutes with each other (except for a]), {a], b]ω, c]ω, d ]ω, x ], b̃]ω, c̃]ω, d̃ ]ω}
where all the relations R] of G̃ ]

ω are exactly the words R of the alphabet
{a, bω, cω, dω, xω, b̃ω, c̃ω, d̃ω} such that R gives positive result when
applied the algorithm α.

Theorem

ω ∈ Ω0 =⇒ G̃ ]
ω = G̃ω

ω ∈ Ω1 ∪ Ω2 =⇒ G̃ ]
ω � G̃ω with non trivial kernel.

Theorem

ω(n) → ω ⇐⇒ G̃ ]

ω(n) → G̃ ]
ω

Supun T. Samarakoon (TAMU) G̃ω June 29, 2018 17 / 21



Modified Overgroup G̃ ]
ω

Definition (G̃ ]
ω)

Modified overgroup G̃ ]
ω is the group generated by involutions which

commutes with each other (except for a]), {a], b]ω, c]ω, d ]ω, x ], b̃]ω, c̃]ω, d̃ ]ω}
where all the relations R] of G̃ ]

ω are exactly the words R of the alphabet
{a, bω, cω, dω, xω, b̃ω, c̃ω, d̃ω} such that R gives positive result when
applied the algorithm α.

Theorem

ω ∈ Ω0 =⇒ G̃ ]
ω = G̃ω

ω ∈ Ω1 ∪ Ω2 =⇒ G̃ ]
ω � G̃ω with non trivial kernel.

Theorem

ω(n) → ω ⇐⇒ G̃ ]

ω(n) → G̃ ]
ω

Supun T. Samarakoon (TAMU) G̃ω June 29, 2018 17 / 21



G̃ ]
ω for ω ∈ Ω2

Theorem (Benli-Grigorchuk 2014)

G ]
0∞ is virtually Z2 o Z.

Theorem

G̃ ]
0∞ is virtually Z3

2 o Z.

Theorem

Let ω ∈ Ω2 and let N be such that ωN 6= ωN+1 = ωN+2 = . . .. Then G̃ ]
ω is

commensurable to (G̃ ]
0∞)2N which is virtually (Z3

2 o Z)2N .
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Closure of Ỹ

Define Ỹ ′1 , Ỹ
′

2 as subsets of M8 by,

Ỹ ′1 = {(G̃ ]
ω, Ã

]
ω)}ω∈Ω1

Ỹ ′2 = {(G̃ ]
ω, Ã

]
ω)}ω∈Ω2

Theorem (Gri84)

cl(Y ) = Y0

⊔
Y1

⊔
Y ′2︸ ︷︷ ︸

Cantor set

⊔
Y2︸︷︷︸

isolated points

Theorem

cl(Ỹ ) = Ỹ0

⊔
Ỹ1

⊔
Ỹ ′1
⊔

Ỹ ′2︸ ︷︷ ︸
Cantor set

⊔
Ỹ2︸︷︷︸

isolated points
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Ỹ ′2︸ ︷︷ ︸
Cantor set

⊔
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