Generalized Grigorchuk's Overgroups

Supun T. Samarakoon (Texas A&M University)

Trees, dynamics and locally compact groups Heinrich Heine Universität Düsseldorf

June 29, 2018

Overview

(3) Growth of generalized overgroup $ilde{G}_{\omega}$

Grigorchuk's Space of Marked Groups

Growth of a Group

G - group, A - set of generators (finite and closed under inverse)

Definition (Growth)

Growth $\gamma_{\mathcal{G}}:\mathbb{N}\cup\{0\}$ ightarrow $\mathbb{N}\cup\{0\}$ is given by,

 $\gamma_G(n) = |\{g \in G : g = a_1a_2 \dots a_k, k \leq n, a_1, \dots, a_k \in A\}|$

Growth of a Group

G - group, A - set of generators (finite and closed under inverse)

Definition (Growth)

Growth $\gamma_{\mathcal{G}}:\mathbb{N}\cup\{0\}
ightarrow\ \mathbb{N}\cup\{0\}$ is given by,

 $\gamma_G(n) = |\{g \in G : g = a_1a_2 \dots a_k, k \leq n, a_1, \dots, a_k \in A\}|$

 $1^{\infty} \in \partial T_2$

ł

 ∞

 ∞

• Infinite

- Infinite
- 3-generated

- Infinite
- 3-generated
- Branch

- Infinite
- 3-generated
- Branch
- Torsion

- Infinite
- 3-generated
- Branch
- Torsion
- Intermediate growth [Gri,1984]

- Infinite
- 3-generated
- Branch
- Torsion
- Intermediate growth [Gri,1984]

$$\gamma_{{\sf G}}({\it n})\sim e^{{\it n}^lpha}$$
 ; where $lphapprox$ 0.7674

First Grigorchuk group [Gri,1980] $\textit{G} = \langle \textit{a},\textit{b},\textit{c},\textit{d} \rangle$

- Infinite
- 3-generated
- Branch
- Torsion
- Intermediate growth [Gri,1984]

 $\gamma_{\mathcal{G}}(\textit{n}) \sim e^{\textit{n}^{lpha}}$; where lpha pprox 0.7674

 $e^{n^{\alpha}}$ is an upper bound [Bartholdi,1998] and [Muchnik-Pak,2001] $e^{n^{\alpha-\epsilon}}$ is a lower bound (for each $\epsilon > 0$) [Erschler-Zheng,2018].

Grigorchuk's overgroup [Gri,1980]
$$\tilde{G} = \left\langle a, \tilde{b}, \tilde{c}, \tilde{d} \right\rangle$$

•
$$\tilde{b}\tilde{c} = d, \tilde{c}\tilde{d} = b, \tilde{d}\tilde{b} = c$$

•
$$\tilde{b}\tilde{c} = d, \tilde{c}\tilde{d} = b, \tilde{d}\tilde{b} = c$$

• Contains G as a subgroup

- $\tilde{b}\tilde{c} = d, \tilde{c}\tilde{d} = b, \tilde{d}\tilde{b} = c$
- Contains G as a subgroup
- $\gamma_G(n) \preceq \gamma_{\tilde{G}}(n)$

- $\tilde{b}\tilde{c} = d, \tilde{c}\tilde{d} = b, \tilde{d}\tilde{b} = c$
- Contains G as a subgroup
- $\gamma_G(n) \preceq \gamma_{\tilde{G}}(n)$
- 4-generated

- $\tilde{b}\tilde{c} = d, \tilde{c}\tilde{d} = b, \tilde{d}\tilde{b} = c$
- Contains G as a subgroup
- $\gamma_G(n) \preceq \gamma_{\tilde{G}}(n)$
- 4-generated

•
$$\tilde{G} = \left\langle a, b, c, d, x, \tilde{b}, \tilde{c}, \tilde{d} \right\rangle$$

- $\tilde{b}\tilde{c} = d, \tilde{c}\tilde{d} = b, \tilde{d}\tilde{b} = c$
- Contains G as a subgroup
- $\gamma_G(n) \preceq \gamma_{\tilde{G}}(n)$
- 4-generated

•
$$\tilde{G} = \left\langle a, b, c, d, x, \tilde{b}, \tilde{c}, \tilde{d} \right\rangle$$

• Contains a non - torsion element

- $\tilde{b}\tilde{c} = d, \tilde{c}\tilde{d} = b, \tilde{d}\tilde{b} = c$
- Contains G as a subgroup
- $\gamma_G(n) \preceq \gamma_{\tilde{G}}(n)$
- 4-generated

•
$$\tilde{G} = \left\langle a, b, c, d, x, \tilde{b}, \tilde{c}, \tilde{d} \right\rangle$$

- Contains a non torsion element
- Intermediate growth [Bartholdi-Gri,2000]

- $\tilde{b}\tilde{c} = d, \tilde{c}\tilde{d} = b, \tilde{d}\tilde{b} = c$
- Contains G as a subgroup
- $\gamma_G(n) \preceq \gamma_{\tilde{G}}(n)$
- 4-generated

•
$$\tilde{G} = \left\langle a, b, c, d, x, \tilde{b}, \tilde{c}, \tilde{d} \right\rangle$$

- Contains a non torsion element
- Intermediate growth [Bartholdi-Gri,2000]
- Plays an important role in Yaroslav Vorobets recent work topological full group on a minimal Cantor system

Generalization for oracle $\boldsymbol{\omega}$

Let $\omega \in \{0, 1, 2\}^{\mathbb{N}}$

Generalization for oracle ω

Let $\omega \in \{0, 1, 2\}^{\mathbb{N}}$

$$0 = \begin{pmatrix} \mathsf{a} \\ \mathsf{a} \\ 1 \end{pmatrix}, 1 = \begin{pmatrix} \mathsf{a} \\ 1 \\ \mathsf{a} \end{pmatrix}, 2 = \begin{pmatrix} 1 \\ \mathsf{a} \\ \mathsf{a} \end{pmatrix}$$

Write $\omega = \omega_1 \omega_2 \dots$ using (*).

Generalization for oracle ω

Let $\omega \in \{0, 1, 2\}^{\mathbb{N}}$

$$0 = \begin{pmatrix} a \\ a \\ 1 \end{pmatrix}, 1 = \begin{pmatrix} a \\ 1 \\ a \end{pmatrix}, 2 = \begin{pmatrix} 1 \\ a \\ a \end{pmatrix}$$
(*)

Write $\omega = \omega_1 \omega_2 \dots$ using (*). Then $b_{\omega}, c_{\omega}, d_{\omega}$ are given by first, second and third rows, respectively. Define $\tilde{b}_{\omega}, \tilde{c}_{\omega}, \tilde{d}_{\omega}$ accordingly.

$$\mathcal{G}_{\omega} = \left\langle \mathsf{a}, \mathsf{b}_{\omega}, \mathsf{c}_{\omega}, \mathsf{d}_{\omega} \right\rangle, \, \widetilde{\mathcal{G}}_{\omega} = \left\langle \mathsf{a}, \widetilde{\mathsf{b}}_{\omega}, \widetilde{\mathsf{c}}_{\omega}, \widetilde{\mathsf{d}}_{\omega} \right
angle$$

Generalization for oracle ω

Let $\omega \in \{0, 1, 2\}^{\mathbb{N}}$

$$0 = \begin{pmatrix} a \\ a \\ 1 \end{pmatrix}, 1 = \begin{pmatrix} a \\ 1 \\ a \end{pmatrix}, 2 = \begin{pmatrix} 1 \\ a \\ a \end{pmatrix}$$
(*)

Write $\omega = \omega_1 \omega_2 \dots$ using (*). Then $b_{\omega}, c_{\omega}, d_{\omega}$ are given by first, second and third rows, respectively. Define $\tilde{b}_{\omega}, \tilde{c}_{\omega}, \tilde{d}_{\omega}$ accordingly.

$$\mathcal{G}_{\omega}=\left\langle \textit{a},\textit{b}_{\omega},\textit{c}_{\omega},\textit{d}_{\omega}
ight
angle , ilde{\mathcal{G}}_{\omega}=\left\langle \textit{a}, ilde{\mathcal{b}}_{\omega}, ilde{\mathcal{c}}_{\omega}, ilde{\mathcal{d}}_{\omega}
ight
angle$$

When $\omega = (012)^{\infty}, G_{\omega} = G$ and $\tilde{G}_{\omega} = \tilde{G}$.

Theorem (Gri,1984)

- If ω is eventually constant, then G_ω is of polynomial growth and hence virtually abelian.
- If ω is not eventually constant, then G_{ω} is of intermediate growth.

$\Omega, \Omega_0, \Omega_1, \Omega_2$

$$\Omega = \{0,1,2\}^{\mathbb{N}}.$$

- $\Omega=\{0,1,2\}^{\mathbb{N}}.$
- $\Omega_0=$ Sequences containing 0,1 and 2 infinitely often e.g. $(012)^\infty$

- $\Omega=\{0,1,2\}^{\mathbb{N}}.$
- $\Omega_0=$ Sequences containing 0,1 and 2 infinitely often e.g. $(012)^\infty$
- $\Omega_2 =$ Eventually constant sequences e.g. 0120^∞

- $\Omega=\{0,1,2\}^{\mathbb{N}}.$
- $\Omega_0=$ Sequences containing 0,1 and 2 infinitely often e.g. $(012)^\infty$
- $\Omega_2 =$ Eventually constant sequences e.g. 0120^∞
- $\Omega_1=\Omega-(\Omega_0\cup\Omega_2)$ e.g. $012(01)^\infty$

 $Stab_{\tilde{G}_{\omega}}(3)$

 $Stab_{\tilde{G}_{\omega}}(3)$

 $|g_{000}|+|g_{001}|+\ldots+|g_{111}|\leq C|g|+D$ for some constant C<1 and $D\geq 0.$

Lemma

Let $\epsilon > 0$, $n_{\epsilon} \in \mathbb{N}$ such that $n_{\epsilon}\epsilon > 5/2$. Let $n \ge n_{\epsilon}$. Let $s \in \mathbb{N}$ such that ω_s is the first time that the third symbol appears in ω . Let $g = W \in \mathcal{D}^{\epsilon}(n)$ represent a word in $\tilde{H}_{\omega}^{(s)}$. Then,

$$\sum_{i_1,i_2,\ldots,i_s} |g_{i_1i_2\ldots i_s}| \leq \left(1-\frac{\epsilon}{5}\right) |g|+2^s-1.$$

Lemma

Let $\epsilon > 0$, $n_{\epsilon} \in \mathbb{N}$ such that $n_{\epsilon}\epsilon > 5/2$. Let $n \ge n_{\epsilon}$. Let $s \in \mathbb{N}$ such that ω_s is the first time that the third symbol appears in ω . Let $g = W \in \mathcal{D}^{\epsilon}(n)$ represent a word in $\tilde{H}_{\omega}^{(s)}$. Then,

$$\sum_{i_1,i_2,\ldots,i_s} |g_{i_1i_2\ldots i_s}| \leq \left(1 - \frac{\epsilon}{5}\right) |g| + 2^s - 1.$$

 $\omega \in \Omega_0 \implies \tilde{G}_\omega$ has sub-exponential growth.

Theorem

- If ω is eventually constant, then \tilde{G}_{ω} is of polynomial growth and hence virtually abelian.
- If ω is not eventually constant, then \tilde{G}_{ω} is of intermediate growth.

Definition (\mathcal{M}_k)

The Grigorchuk's space of marked groups with k generators,

 $\mathcal{M}_k = \{(G, A) : A \text{ is an ordered set of } k \text{ elements generating } G\}$

Definition (\mathcal{M}_k)

The Grigorchuk's space of marked groups with k generators,

 $\mathcal{M}_k = \{(G, A) : A \text{ is an ordered set of } k \text{ elements generating } G\}$

together with the topology generated by the metric

$$d((G_1, A_1), (G_2, A_2)) = 2^{-n}$$

where *n* is the largest integer such that the balls of radius *n* centered at identity of the Cayley graphs of (G_1, A_1) and (G_2, A_2) are identical.

Definition (\mathcal{M}_k)

The Grigorchuk's space of marked groups with k generators,

 $\mathcal{M}_k = \{(G, A) : A \text{ is an ordered set of } k \text{ elements generating } G\}$

together with the topology generated by the metric

$$d((G_1, A_1), (G_2, A_2)) = 2^{-n}$$

where *n* is the largest integer such that the balls of radius *n* centered at identity of the Cayley graphs of (G_1, A_1) and (G_2, A_2) are identical.

$$(G, \{a, b, c, d\}) \in \mathcal{M}_4$$

 $(\tilde{G}, \{a, b, c, d, x, \tilde{b}, \tilde{c}, \tilde{d}\}) \in \mathcal{M}_8$

Define $\tilde{\mathscr{Y}}, \tilde{\mathscr{Y}}_0, \tilde{\mathscr{Y}}_1, \tilde{\mathscr{Y}}_2$ as subsets of \mathcal{M}_8 ,

$$\begin{split} \widetilde{\mathscr{Y}} &= \{(\widetilde{G}_\omega, \widetilde{A}_\omega)\}_{\omega \in \Omega} \ \widetilde{\mathscr{Y}}_0 &= \{(\widetilde{G}_\omega, \widetilde{A}_\omega)\}_{\omega \in \Omega_0} \ \widetilde{\mathscr{Y}}_1 &= \{(\widetilde{G}_\omega, \widetilde{A}_\omega)\}_{\omega \in \Omega_1} \ \widetilde{\mathscr{Y}}_2 &= \{(\widetilde{G}_\omega, \widetilde{A}_\omega)\}_{\omega \in \Omega_2} \end{split}$$

Define $\tilde{\mathscr{Y}}, \tilde{\mathscr{Y}}_0, \tilde{\mathscr{Y}}_1, \tilde{\mathscr{Y}}_2$ as subsets of \mathcal{M}_8 ,

$$\begin{split} \widetilde{\mathscr{Y}} &= \{(\widetilde{G}_{\omega},\widetilde{A}_{\omega})\}_{\omega\in\Omega} \ \widetilde{\mathscr{Y}}_0 &= \{(\widetilde{G}_{\omega},\widetilde{A}_{\omega})\}_{\omega\in\Omega_0} \ \widetilde{\mathscr{Y}}_1 &= \{(\widetilde{G}_{\omega},\widetilde{A}_{\omega})\}_{\omega\in\Omega_1} \ \widetilde{\mathscr{Y}}_2 &= \{(\widetilde{G}_{\omega},\widetilde{A}_{\omega})\}_{\omega\in\Omega_2} \end{split}$$

Then

$$\tilde{\mathscr{Y}} = \tilde{\mathscr{Y}}_0 \bigsqcup \tilde{\mathscr{Y}}_1 \bigsqcup \tilde{\mathscr{Y}}_2$$

Define $\tilde{\mathscr{Y}}, \tilde{\mathscr{Y}}_0, \tilde{\mathscr{Y}}_1, \tilde{\mathscr{Y}}_2$ as subsets of \mathcal{M}_8 ,

$$\begin{split} \widetilde{\mathscr{Y}} &= \{(\widetilde{G}_{\omega},\widetilde{A}_{\omega})\}_{\omega\in\Omega} \ \widetilde{\mathscr{Y}}_0 &= \{(\widetilde{G}_{\omega},\widetilde{A}_{\omega})\}_{\omega\in\Omega_0} \ \widetilde{\mathscr{Y}}_1 &= \{(\widetilde{G}_{\omega},\widetilde{A}_{\omega})\}_{\omega\in\Omega_1} \ \widetilde{\mathscr{Y}}_2 &= \{(\widetilde{G}_{\omega},\widetilde{A}_{\omega})\}_{\omega\in\Omega_2} \end{split}$$

Then

$$\tilde{\mathscr{Y}} = \tilde{\mathscr{Y}}_0 \bigsqcup \tilde{\mathscr{Y}}_1 \bigsqcup \tilde{\mathscr{Y}}_2$$

What is

 $cl(\tilde{\mathscr{Y}})$

Algorithm for the word problem in \widetilde{G}_{ω}

Let W be a reduced word of the alphabet $\{a, b_{\omega}, c_{\omega}, d_{\omega}, x_{\omega}, \tilde{b}_{\omega}, \tilde{c}_{\omega}, \tilde{d}_{\omega}\}$. Algorithm α is,

- $|W| = 0 \implies W = 1$. (positive)
- $|W|_a \equiv 1 \pmod{2} \implies W \neq 1.$ (negative)

•
$$|W| = 1 \implies (stop).$$

• Replace W with reduced W_0, W_1 and repeat

Modified Overgroup $\tilde{G}^{\sharp}_{\omega}$

Definition $(\tilde{G}^{\sharp}_{\omega})$

Modified overgroup $\tilde{G}_{\omega}^{\sharp}$ is the group generated by involutions which commutes with each other (except for a^{\sharp}), $\{a^{\sharp}, b_{\omega}^{\sharp}, c_{\omega}^{\sharp}, d_{\omega}^{\sharp}, x^{\sharp}, \tilde{b}_{\omega}^{\sharp}, \tilde{c}_{\omega}^{\sharp}, \tilde{d}_{\omega}^{\sharp}\}$ where all the relations R^{\sharp} of $\tilde{G}_{\omega}^{\sharp}$ are exactly the words R of the alphabet $\{a, b_{\omega}, c_{\omega}, d_{\omega}, x_{\omega}, \tilde{b}_{\omega}, \tilde{c}_{\omega}, \tilde{d}_{\omega}\}$ such that R gives positive result when applied the algorithm α .

Modified Overgroup $\tilde{G}^{\sharp}_{\omega}$

Definition $(\tilde{G}^{\sharp}_{\omega})$

Modified overgroup $\tilde{G}_{\omega}^{\sharp}$ is the group generated by involutions which commutes with each other (except for a^{\sharp}), $\{a^{\sharp}, b_{\omega}^{\sharp}, c_{\omega}^{\sharp}, d_{\omega}^{\sharp}, x^{\sharp}, \tilde{b}_{\omega}^{\sharp}, \tilde{c}_{\omega}^{\sharp}, \tilde{d}_{\omega}^{\sharp}\}$ where all the relations R^{\sharp} of $\tilde{G}_{\omega}^{\sharp}$ are exactly the words R of the alphabet $\{a, b_{\omega}, c_{\omega}, d_{\omega}, x_{\omega}, \tilde{b}_{\omega}, \tilde{c}_{\omega}, \tilde{d}_{\omega}\}$ such that R gives positive result when applied the algorithm α .

Theorem

$$\begin{array}{ll} \omega \in \Omega_0 \implies \tilde{G}^{\sharp}_{\omega} = \tilde{G}_{\omega} \\ \omega \in \Omega_1 \cup \Omega_2 \implies \tilde{G}^{\sharp}_{\omega} \twoheadrightarrow \tilde{G}_{\omega} \text{ with non trivial kernel.} \end{array}$$

Modified Overgroup $ilde{G}^{\sharp}_{\omega}$

Definition $(\tilde{G}^{\sharp}_{\omega})$

Modified overgroup $\tilde{G}_{\omega}^{\sharp}$ is the group generated by involutions which commutes with each other (except for a^{\sharp}), $\{a^{\sharp}, b_{\omega}^{\sharp}, c_{\omega}^{\sharp}, d_{\omega}^{\sharp}, x^{\sharp}, \tilde{b}_{\omega}^{\sharp}, \tilde{c}_{\omega}^{\sharp}, \tilde{d}_{\omega}^{\sharp}\}$ where all the relations R^{\sharp} of $\tilde{G}_{\omega}^{\sharp}$ are exactly the words R of the alphabet $\{a, b_{\omega}, c_{\omega}, d_{\omega}, x_{\omega}, \tilde{b}_{\omega}, \tilde{c}_{\omega}, \tilde{d}_{\omega}\}$ such that R gives positive result when applied the algorithm α .

Theorem

$$\begin{array}{ll} \omega \in \Omega_0 \implies \tilde{G}^{\sharp}_{\omega} = \tilde{G}_{\omega} \\ \omega \in \Omega_1 \cup \Omega_2 \implies \tilde{G}^{\sharp}_{\omega} \twoheadrightarrow \tilde{G}_{\omega} \text{ with non trivial kernel.} \end{array}$$

Theorem

$$\omega^{(n)} \to \omega \iff \tilde{G}^{\sharp}_{\omega^{(n)}} \to \tilde{G}^{\sharp}_{\omega}$$

Theorem (Benli-Grigorchuk 2014)

 $G_{0^{\infty}}^{\sharp}$ is virtually $\mathbb{Z}_2 \wr \mathbb{Z}$.

 $ilde{G}^{\sharp}_{\omega}$ for $\omega\in\Omega_2$

Theorem (Benli-Grigorchuk 2014)

 $G_{0^{\infty}}^{\sharp}$ is virtually $\mathbb{Z}_2 \wr \mathbb{Z}$.

Theorem

 $\tilde{G}_{0^{\infty}}^{\sharp}$ is virtually $\mathbb{Z}_{2}^{3} \wr \mathbb{Z}$.

 $\tilde{G}^{\sharp}_{\omega}$ for $\omega \in \Omega_2$

Theorem (Benli-Grigorchuk 2014)

 $G_{0^{\infty}}^{\sharp}$ is virtually $\mathbb{Z}_2 \wr \mathbb{Z}$.

Theorem

$$\widetilde{G}_{0^{\infty}}^{\sharp}$$
 is virtually $\mathbb{Z}_{2}^{3} \wr \mathbb{Z}$.

Theorem

Let $\omega \in \Omega_2$ and let N be such that $\omega_N \neq \omega_{N+1} = \omega_{N+2} = \dots$ Then $\tilde{G}_{\omega}^{\sharp}$ is commensurable to $(\tilde{G}_{0\infty}^{\sharp})^{2^N}$ which is virtually $(\mathbb{Z}_2^3 \wr \mathbb{Z})^{2^N}$.

Closure of $\tilde{\mathscr{Y}}$

Define $\tilde{\mathscr{Y}}_1',\tilde{\mathscr{Y}}_2'$ as subsets of \mathcal{M}_8 by,

$$\begin{split} \widetilde{\mathscr{Y}}_1' &= \{(\widetilde{G}_\omega^{\sharp}, \widetilde{A}_\omega^{\sharp})\}_{\omega \in \Omega_1} \ \widetilde{\mathscr{Y}}_2' &= \{(\widetilde{G}_\omega^{\sharp}, \widetilde{A}_\omega^{\sharp})\}_{\omega \in \Omega_2} \end{split}$$

Closure of $\tilde{\mathscr{Y}}$

Define $\tilde{\mathscr{Y}}_1', \tilde{\mathscr{Y}}_2'$ as subsets of \mathcal{M}_8 by,

$$\begin{split} \widetilde{\mathscr{Y}}_1' &= \{(\widetilde{G}_\omega^{\sharp}, \widetilde{A}_\omega^{\sharp})\}_{\omega \in \Omega_1} \ \widetilde{\mathscr{Y}}_2' &= \{(\widetilde{G}_\omega^{\sharp}, \widetilde{A}_\omega^{\sharp})\}_{\omega \in \Omega_2} \end{split}$$

Closure of $\tilde{\mathscr{Y}}$

Define $\tilde{\mathscr{Y}}_1', \tilde{\mathscr{Y}}_2'$ as subsets of \mathcal{M}_8 by,

$$\begin{split} \widetilde{\mathscr{Y}}_1' &= \{(\widetilde{G}_\omega^{\sharp}, \widetilde{A}_\omega^{\sharp})\}_{\omega \in \Omega_1} \ \widetilde{\mathscr{Y}}_2' &= \{(\widetilde{G}_\omega^{\sharp}, \widetilde{A}_\omega^{\sharp})\}_{\omega \in \Omega_2} \end{split}$$

References

- Bar98 Bartholdi, Laurent The growth of Grigorchuk's torsion group. Internat. Math. Res. Notices 1998, no. 20, 1049-1054.
- BG00 Bartholdi, Laurent; Grigorchuk, Rostislav I. On the spectrum of Hecke type operators related to some fractal groups. Tr. Mat. Inst. Steklova 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, 5-45; translation in Proc. Steklov Inst. Math. 2000, no. 4(231), 1-41.
- BG02 Bartholdi, Laurent; Grigorchuk, Rostislav I. On parabolic subgroups and Hecke algebras of some fractal groups. *Serdica Math. J. 28* (2002), no. 1, 47-90.
- BG14 Benli, Mustafa G.; Grigorchuk, Rostislav I. On the condensation property of the lamplighter groups and groups of intermediate growth. *Algebra Discrete Math.* 17 (2014), no. 2, 222-231.

References

- EZ18 Erschler, Anna; Zheng, Tianyi Growth of periodic Grigorchuk groups. arXiv, 1802.09077v1, Feb., 2018.
- Gri84 Grigorchuk, Rostislav I. Degrees of growth of finitely generated groups and the theory of invariant means. *Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5*, 939-985.
- MP01 Muchnik, Roman; Pak, Igor **On growth of Grigorchuk groups**. Internat. J. Algebra Comput. 11 (2001), no. 1, 1-17.

Thank You