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Ihara zeta function

Let Y = (V ,E ) be a connected graph and let t ∈ C, with |t| sufficiently

small. Then the Ihara zeta function ζY (t) of graph Y is defined as

ζY (t) =
∏

[C ] prime cycle in Y

(1− tν(C))−1, (1)

where [C ] in Y is an equivalence class of tailless, back-trackless primitive

cycles C in Y and length of C is ν(C ).

Example: Cycle Graph

Let Y be a cycle graph with n vertices. As there are only two primes,

ζY (t) = (1− tn)−2.
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Ihara-Bass determinant formula

The Ihara-Bass’s Theorem establishes the connection between ζY (t) and

the adjacency matrix A of the graph Y which is given as

Theorem (Ihara and Bass)

Let Q be the diagonal matrix with jth diagonal entry qj such that

qj + 1 = degree of jth vertex of Y and r be the rank of fundamental

group of Y , r − 1 = |E | − |V |. Then Ihara determinant formula is

ζY (t)−1 = (1− t2)r−1 det(I − At + Qt2).
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Unramified and d-sheeted coverings

• All graphs are connected and undirected.

• An unramified cover of a graph Y is a surjective graph

homomorphism

π : Ỹ → Y

which is a local isomorphism.

• The fiber

π−1(x) = {x1, x2, x3, x4}.

Here x ′i s are representatives of copies of a spanning tree of Y .
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Galois covering of a graph

• The group of automorphisms of π is

Aut(π) = {σ : Ỹ → Ỹ automorphism |π = π ◦ σ}.

An automorphism σ is determined by its action on the fiber π−1(x)

above any vertex x of Y .

• Call π : Ỹ → Y (or Ỹ |Y ) a Galois or normal cover if Aut(π) acts

transitively on one fiber and hence all fibers. Its Galois group is

G = Gπ = Aut(π) = G (Ỹ |Y ).

• If a fiber π−1(x) is a finite set, its cardinality is called the degree of

π. A finite degree cover Ỹ |Y is Galois iff

|G| = deg π.

We call σ as Frobenius automorphism.
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• Suppose Ỹ is normal covering of Y with Galois group G.

The adjacency matrix of Ỹ can be block diagonalized where the

blocks are of the form

Aρ =
∑
g∈G

A(g)⊗ ρ(g),

each taken dρ(= dim irr rep ρ) times and m ×m matrix A(g) for

g ∈ G is the matrix whose i , j entry is

A(g)i,j = the number of edges in Ỹ between (i , id) to (j , g),

where id denotes the identity in G and m is the number of vertices

of the graph Y .
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• By setting Qρ = Q ⊗ Idρ , with dρ = degree of ρ, we have the

following analogue

L(t, ρ, Ỹ |Y )−1 = (1− t2)(r−1)dρ det(I − tAρ + t2Qρ).

Thus we have zeta functions of Ỹ factors as follows

ζỸ (t) =
∏
ρ∈Ĝ

L(t, ρ, Ỹ |Y )dρ .
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Assumptions

• Let G be a group generated by bounded automaton A with

generating set S = {s1, · · · , sm}.
• G has level transitive action on the regular rotted tree Td .

• Recall for every s ∈ S we have s = (s|x1 , · · · , s|xd )ψs , where ψs ∈ Sd
and s|x = the restriction s at x where x ∈ X = {x1, · · · , xd}.

• We call ψs as root permutation associated to state s.

• Denote ΨG = group generated by root permutations ψs

ΨG = < ψs : s ∈ S > .
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Post critical sequences

Definition
A left-infinite sequence · · · x2x1 over X is called post critical if there

exists a left-infinite path · · · e2, e1 in the Moore diagram of A avoiding

the trivial state labeled by · · · x2x1| · · · y2y1 for some yi ∈ X.

G is a group generated by bounded automaton iff the set of post critical

sequences say PA is finite.
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Schreier and Tile graphs

Let G be a group generated by bounded automaton A. The levels X r of

the tree X ∗ are invariant under the action of the group G .

Definition
The Schreier graph Γr of the action of G on X r , is a graph with vertex

set X r and two vertices v and u are adjacent if and only if there exists

s ∈ S such that s(v) = u.

Definition
The tile graph Γ′r of the action of G on X r , is a graph with vertex set X r

and two vertices v and u are adjacent if and only if there exists s ∈ S

such that s(v) = u and s|v = 1.

The tile graph is therefore a subgraph of the Schreier graph.

In our case, tile graphs are always connected.
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Example: Basilica group

The Basilica group B1: a = (b,1)e, b = (a,1)ψb where ψb = (0, 1) and

e is the identity in S2.

a

b

1

1|1

1|0

0|10|0 0|0, 1|1
Post critical sequences:

P = {(0)−ω, (10)−ω, (01)−ω}

1R. I. Grigorchuk and A. Żuk, On a torsion-free weakly branch group defined by a

three state automaton, I. J. Algebra and Computation 12 (2002) 223–246.
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Schreier graphs of Basilica group
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Figure 1: The graphs BΓ1,
B Γ2 and BΓ3 are the Schreier graphs of the Basilica

group (B) over X ,X 2 and X 3 respectively.
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Schreier graphs of Basilica group
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Schreier graphs of Basilica group
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Tile graphs of Basilica group
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Figure 2: The graphs BΓ′
1,

B Γ′
2 and BΓ′

3 are the Tile graphs of the Basilica

group (B) over X ,X 2 and X 3 respectively.
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Examples

Gupta-Sidki p group2: a = (b, b−1,1, · · · ,1, a)e, b = (1, · · · ,1)ψb,

where ψb = (1, · · · , p) and e ∈ Sp and P = {(p)−w , (p)−w1, (p)−w2}.
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3

GSΓ3
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2

Schreier graphs of Gupta-Sidki p = 3 group (GS)

2N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Mathematische

Zeitschrift, 182 (1983) 385–388. 19



Examples

Brunner-Sidki-Vieira (BSV)-group3:

a = (1, · · · ,1, a−1)ψa, b = (1, · · · ,1, b)ψb where

ψa = ψb = (1, 2, · · · , n) ∈ Sn and P = {(4)−w , (41)−w , (14)−w}.

b
b

b

b

a

a

a

a

1 2

34

BSV Γ1

Schreier graphs

of BSV group

1121

31

41

12

22

32
42 13

23

33

43

14

24

34
44

BSV Γ2

3A. Brunner, S. Sidki, and AC Vieira, A just-nonsolvable torsion-free group defined on

the binary tree, Journal of Algebra, 211 (1999) 99–114.
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Examples

Tower of Hanoi group Hn for n = 3

a = (1,1, a)(1, 2), b = (1, b,1)(1, 3), c = (c ,1,1)(2, 3) and

P = {(1)−w , (2)−w , (3)−w}.
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1

Schreier graphs of

Tower of hanoi group
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13 33
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TΓ3

2
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Generalized replacement product of graphs

If e = {v , v ′} is an edge of the k-regular graph Γ which has color say s

near v and s ′ near v ′ and if K is the set of colors K = {1, 2, · · · , k},
then the rotation map RotΓ : X n × K → X n × K is defined by

RotΓ(v , s) = (v ′, s ′), for all v , v ′ ∈ X n, s, s ′ ∈ K .

Definition

The generalized replacement product Γn g©Γr is |S |-regular graph with

vertex set X n+r = X n × X r , and whose edges are described by the

following rotation map: Let (v , u) ∈ X n × X r

Rot((v , u), s) = ((v , s(u)), s−1), if s ∈ S and s|u = 1. (1)

Rot((v , u), s) = ((s|u(v), s(u)), s−1), s ∈ S , s|u 6= 1, s|uv = 1. (2)

Rot((v , u), s) = ((s|u(v), s(u)), s−1), s ∈ S , s|u 6= 1, s|uv 6= 1. (3)
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Proposition
If n, r ≥ 1, then the following holds:

1. The graphs GΓn g©GΓr ,
GΓn+r are isomorphic.

2. GΓn+r is an unramified, dn sheeted graph covering of GΓr .

Proposition

1. The first rotation map gives the |X | disjoint copies of tile graph GΓ′r
indexed by x ∈ X .

2. In addition to the first rotation map, the second rotation map adds

the edges between the copies of GΓ′r and it produces the tile graph
GΓ′r+1.

3. In addition to the first and second rotation maps, the third rotation

map adds the edges between the post critical vertices of the tile

graph GΓ′r+1 and it produces the Schreier graph GΓr+1.

Applying the first and second rotation maps to the tile graph GΓ′r is

identical to the construction of inflation. 23



Proposition
Let Γn and Γr be Schreier graphs of the group generated by bounded

automaton S. Then the first and second rotation maps of generalized

replacement product Γn g©Γr and the n-th iteration of inflation are

equivalent.
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Examples: Generalized replacement product of graphs

0 1 GrΓ1

0 1 GrΓ′1

(0, 1) (0, 0) (1, 0) (1, 1)

GrΓ2
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Examples: Generalized replacement product of graphs
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Examples: Generalized replacement product of graphs
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Examples: Generalized replacement product of graphs
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Examples: Generalized replacement product of graphs
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Given a group generated by bounded

automaton, what can be said about the Galois

coverings of the corresponding Schreier

graphs?
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Theorem
If |ΨG | = d, then the Schreier graph GΓn+1 is a Galois covering of GΓn

with Galois group G = Gal(GΓn+1|GΓn) ' ΨG .

In other words,

If |ΨG | = d, then the root permutations ψs are the Frobenius

automorphisms associated to GΓn+1 over GΓn.
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Proof Sketch

• Recall that GΓn+r is an unramified q-sheeted covering over GΓn.

Take r = 1, so we have a covering map π :G Γn+1 →G Γn of degree

d . (Use: Generalized replacement product of Schreier graphs.)

• Look at the lifts of every non-tile edge of the graph GΓn which is of

the form es|u = {u, s(u)}, where s|u 6= 1.

Define a map σs|u : GΓn+1 → GΓn+1 such that

σs|u (vxi ) = vs|u(xi ), ∀ vxi ∈ X n+1.
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• By Self-similarity of G , we have

σ(es|u )(x) = ψs|u (x), for all x ∈ X .

Therefore every such σ(es|u ) is an automorphism and they are finite

in number.

• Use the facts : |ΨG | = d and G has level transitive action to show

there are exactly d such automorphisms.

⇒ G = < ψs|u | s ∈ S , u ∈ X n with s|u 6= 1 > = ΨG .

• Every σ(es|u ) is compatible with the covering map φ.
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L and zeta functions of Schreier graphs of FG

The covering Ỹ = FGΓ2 over the graph Y = FGΓ1 is 3-sheeted normal

covering. In this case the Galois group is

G = < g = (1, 2, 3) | g3 = e > ' Z
3Z
. We now write all matrices

A(g), g ∈ G.

A(e) =

0 1 1

1 2 1

1 1 2

 , A(g) = A(g2) =

1 0 0

0 0 0

0 0 0

 .

The Artinized adjacency matrices Aχi , where χi is an irreducible

character of G.

Aχ1 =

2 1 1

1 2 1

1 1 2

 , Aχ2 = Aχ3 = A(e).
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Reciprocals of L functions for Ỹ |Y are as follows

1) For Aχ1

ζY (t)−1 = L(t,Aχ1 , Ỹ |Y )−1 = (1− t2)3(t − 1)(3t − 1)
(
3t2 − t + 1

)2

2) As Aχ2 = Aχ3

L(t,Aχ2 , Ỹ |Y )−1 = L(t,Aχ3 , Ỹ |Y )−1

= (1− t2)3
(
3t2 − t + 1

)2 (
9t4 − 6t3 + t2 − 2t + 1

)2

We have

ζỸ (t)−1 =
∏

χi∈{χ1,χ2,χ3}

L(t,Aχi , Ỹ |Y )−1

= (1− t2)9(t − 1)(3t − 1)
(
3t2 − t + 1

)4 (
9t4 − 6t3 + t2 − 2t + 1

)2
.
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Zeta and L functions of Schreier graphs of Basilica group

Reciprocals of L functions for Ỹ |Y = BΓ3|BΓ2 :

1) For A1

ζΓ2 (t)−1 = L(t,A1, Ỹ |Y )−1 = (1−t2)4(t−1)(3t−1)
(
3t2 + 1

) (
9t4 − 2t2 + 1

)
.

2) For Aσ L(t,Aσ, Ỹ |Y )−1 = (1− t2)4
(
3t2 − 2t + 1

)
×
(
27t6 − 18t5 + 3t4 − 4t3 + t2 − 2t + 1

)
.

As Ỹ |Y is normal covering, we have

ζΓ3 (t)−1 = L(t,A1, Ỹ |Y )−1L(t,Aσ, Ỹ |Y )−1

= (1− t2)8(t − 1)(3t − 1)
(
3t2 + 1

) (
3t2 − 2t + 1

) (
9t4 − 2t2 + 1

)(
27t6 − 18t5 + 3t4 − 4t3 + t2 − 2t + 1

)
.
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Thank you very much for your attention!
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