Galois coverings of Schreier graphs

of groups generated by bounded automata

Asif Shaikh

(Joint work with D D'Angeli, H Bhate \& D Sheth)
June 29, 2018

Ihara zeta function

Let $Y=(V, E)$ be a connected graph and let $t \in \mathbb{C}$, with $|t|$ sufficiently small. Then the Ihara zeta function $\zeta_{Y}(t)$ of graph Y is defined as

$$
\begin{equation*}
\zeta_{Y}(t)=\prod_{[C] \text { prime cycle in } Y}\left(1-t^{\nu(C)}\right)^{-1} \text {, } \tag{1}
\end{equation*}
$$

where [C] in Y is an equivalence class of tailless, back-trackless primitive cycles C in Y and length of C is $\nu(C)$.

Example: Cycle Graph

Let Y be a cycle graph with n vertices. As there are only two primes,

$$
\zeta_{Y}(t)=\left(1-t^{n}\right)^{-2} .
$$

Ihara-Bass determinant formula

The Ihara-Bass's Theorem establishes the connection between $\zeta_{Y}(t)$ and the adjacency matrix A of the graph Y which is given as

Theorem (Ihara and Bass)

Let Q be the diagonal matrix with j th diagonal entry q_{j} such that $q_{j}+1=$ degree of j th vertex of Y and r be the rank of fundamental group of $Y, r-1=|E|-|V|$. Then Ihara determinant formula is

$$
\zeta_{Y}(t)^{-1}=\left(1-t^{2}\right)^{r-1} \operatorname{det}\left(I-A t+Q t^{2}\right) .
$$

Unramified and d-sheeted coverings

- All graphs are connected and undirected.
- An unramified cover of a graph Y is a surjective graph homomorphism

$$
\pi: \widetilde{Y} \rightarrow Y
$$

which is a local isomorphism.

- The fiber

$$
\pi^{-1}(x)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} .
$$

Here $x_{i}^{\prime} s$ are representatives of copies of a spanning tree of Y.

Galois covering of a graph

- The group of automorphisms of π is

$$
\operatorname{Aut}(\pi)=\{\sigma: \widetilde{Y} \rightarrow \widetilde{Y} \text { automorphism } \mid \pi=\pi \circ \sigma\} .
$$

An automorphism σ is determined by its action on the fiber $\pi^{-1}(x)$ above any vertex x of Y.

- Call $\pi: \widetilde{Y} \rightarrow Y$ (or $\widetilde{Y} \mid Y)$ a Galois or normal cover if $\operatorname{Aut}(\pi)$ acts transitively on one fiber and hence all fibers. Its Galois group is

$$
\mathbb{G}=G_{\pi}=\operatorname{Aut}(\pi)=G(\widetilde{Y} \mid Y) .
$$

- If a fiber $\pi^{-1}(x)$ is a finite set, its cardinality is called the degree of π. A finite degree cover $\widetilde{Y} \mid Y$ is Galois iff

$$
|\mathbb{G}|=\operatorname{deg} \pi
$$

We call σ as Frobenius automorphism.

Examples

Examples

Examples

Examples

- Suppose \widetilde{Y} is normal covering of Y with Galois group \mathbb{G}. The adjacency matrix of \widetilde{Y} can be block diagonalized where the blocks are of the form

$$
A_{\rho}=\sum_{g \in \mathbb{G}} A(g) \otimes \rho(g),
$$

each taken $d_{\rho}(=\operatorname{dim}$ ir rep $\rho)$ times and $m \times m$ matrix $A(g)$ for $g \in \mathbb{G}$ is the matrix whose i, j entry is

$$
A(g)_{i, j}=\text { the number of edges in } \widetilde{Y} \text { between }(i, i d) \text { to }(j, g),
$$

where id denotes the identity in \mathbb{G} and m is the number of vertices of the graph Y.

- By setting $Q_{\rho}=Q \otimes I_{d_{\rho}}$, with $d_{\rho}=$ degree of ρ, we have the following analogue

$$
L(t, \rho, \widetilde{Y} \mid Y)^{-1}=\left(1-t^{2}\right)^{(r-1) d_{\rho}} \operatorname{det}\left(I-t A_{\rho}+t^{2} Q_{\rho}\right)
$$

Thus we have zeta functions of \widetilde{Y} factors as follows

$$
\zeta_{\widetilde{Y}}(t)=\prod_{\rho \in \widehat{\mathbb{G}}} L(t, \rho, \widetilde{Y} \mid Y)^{d_{\rho}} .
$$

Assumptions

- Let G be a group generated by bounded automaton \mathcal{A} with generating set $S=\left\{s_{1}, \cdots, s_{m}\right\}$.
- G has level transitive action on the regular rotted tree T_{d}.
- Recall for every $s \in S$ we have $s=\left(\left.s\right|_{X_{1}}, \cdots,\left.s\right|_{X_{d}}\right) \psi_{s}$, where $\psi_{s} \in S_{d}$ and $\left.s\right|_{x}=$ the restriction s at x where $x \in X=\left\{x_{1}, \cdots, x_{d}\right\}$.
- We call ψ_{s} as root permutation associated to state s.
- Denote $\Psi_{G}=$ group generated by root permutations ψ_{s}

$$
\Psi_{G}=\left\langle\psi_{s}: s \in S\right\rangle
$$

Post critical sequences

Definition

A left-infinite sequence $\cdots x_{2} x_{1}$ over X is called post critical if there exists a left-infinite path $\cdots e_{2}, e_{1}$ in the Moore diagram of \mathcal{A} avoiding the trivial state labeled by $\cdots x_{2} x_{1} \mid \cdots y_{2} y_{1}$ for some $y_{i} \in X$.
G is a group generated by bounded automaton iff the set of post critical sequences say $\mathcal{P}_{\mathcal{A}}$ is finite.

Schreier and Tile graphs

Let G be a group generated by bounded automaton \mathcal{A}. The levels X^{r} of the tree X^{*} are invariant under the action of the group G.

Definition

The Schreier graph Γ_{r} of the action of G on X^{r}, is a graph with vertex set X^{r} and two vertices v and u are adjacent if and only if there exists $s \in S$ such that $s(v)=u$.

Definition

The tile graph Γ_{r}^{\prime} of the action of G on X^{r}, is a graph with vertex set X^{r} and two vertices v and u are adjacent if and only if there exists $s \in S$ such that $s(v)=u$ and $\left.s\right|_{v}=\mathbb{1}$.

The tile graph is therefore a subgraph of the Schreier graph. In our case, tile graphs are always connected.

Example: Basilica group

The Basilica group $B^{1}: a=(b, \mathbb{1}) e, b=(a, \mathbb{1}) \psi_{b}$ where $\psi_{b}=(0,1)$ and e is the identity in S_{2}.

Post critical sequences:

$$
\mathcal{P}=\left\{(0)^{-\omega},(10)^{-\omega},(01)^{-\omega}\right\}
$$

${ }^{1}$ R. I. Grigorchuk and A. Żuk, On a torsion-free weakly branch group defined by a three state automaton, I. J. Algebra and Computation 12 (2002) 223-246.

Schreier graphs of Basilica group

Figure 1: The graphs ${ }^{B} \Gamma_{1},{ }^{B} \Gamma_{2}$ and ${ }^{B} \Gamma_{3}$ are the Schreier graphs of the Basilica group (B) over X, X^{2} and X^{3} respectively.

Schreier graphs of Basilica group

Schreier graphs of Basilica group

Tile graphs of Basilica group

Figure 2: The graphs ${ }^{B} \Gamma_{1}^{\prime},{ }^{B} \Gamma_{2}^{\prime}$ and ${ }^{B} \Gamma_{3}^{\prime}$ are the Tile graphs of the Basilica group (B) over X, X^{2} and X^{3} respectively.

Examples

Gupta-Sidki p group ${ }^{2}: ~ a=\left(b, b^{-1}, \mathbb{1}, \cdots, \mathbb{1}, a\right) e, b=(\mathbb{1}, \cdots, \mathbb{1}) \psi_{b}$, where $\psi_{b}=(1, \cdots, p)$ and $e \in S_{p}$ and $\mathcal{P}=\left\{(p)^{-w},(p)^{-w} 1,(p)^{-w} 2\right\}$.

Schreier graphs of Gupta-Sidki p $=3$ group (GS)

[^0] Zeitschrift, 182 (1983) 385-388.

Examples

Brunner-Sidki-Vieira (BSV)-group ${ }^{3}$:

$a=\left(\mathbb{1}, \cdots, \mathbb{1}, a^{-1}\right) \psi_{a}, b=(\mathbb{1}, \cdots, \mathbb{1}, b) \psi_{b}$ where
$\psi_{a}=\psi_{b}=(1,2, \cdots, n) \in S_{n}$ and $\mathcal{P}=\left\{(4)^{-w},(41)^{-w},(14)^{-w}\right\}$.

Schreier graphs of BSV group

${ }^{3}$ A. Brunner, S. Sidki, and AC Vieira, A just-nonsolvable torsion-free group defined on the binary tree, Journal of Algebra, 211 (1999) 99-114.

Examples

Tower of Hanoi group H_{n} for $n=3$

$$
\begin{aligned}
& a=(\mathbb{1}, \mathbb{1}, a)(1,2), b=(\mathbb{1}, b, \mathbb{1})(1,3), c=(c, \mathbb{1}, \mathbb{1})(2,3) \text { and } \\
& \mathcal{P}=\left\{(1)^{-w},(2)^{-w},(3)^{-w}\right\} .
\end{aligned}
$$

Schreier graphs of
Tower of hanoi group

Generalized replacement product of graphs

If $e=\left\{v, v^{\prime}\right\}$ is an edge of the k-regular graph Γ which has color say s near v and s^{\prime} near v^{\prime} and if K is the set of colors $K=\{1,2, \cdots, k\}$, then the rotation map $\operatorname{Rot}_{\Gamma}: X^{n} \times K \rightarrow X^{n} \times K$ is defined by

$$
\operatorname{Rot}_{\Gamma}(v, s)=\left(v^{\prime}, s^{\prime}\right), \text { for all } v, v^{\prime} \in X^{n}, \quad s, s^{\prime} \in K
$$

Definition

The generalized replacement product $\Gamma_{n}\left(\mathrm{~g} \Gamma_{r}\right.$ is $|S|$-regular graph with vertex set $X^{n+r}=X^{n} \times X^{r}$, and whose edges are described by the following rotation map: Let $(v, u) \in X^{n} \times X^{r}$
$\operatorname{Rot}((v, u), s)=\left((v, s(u)), s^{-1}\right), \quad$ if $s \in S$ and $\left.s\right|_{u}=\mathbb{1}$.
$\operatorname{Rot}((v, u), s)=\left(\left(\left.s\right|_{u}(v), s(u)\right), s^{-1}\right), \quad s \in S,\left.s\right|_{u} \neq \mathbb{1},\left.s\right|_{u v}=\mathbb{1}$.
$\operatorname{Rot}((v, u), s)=\left(\left(\left.s\right|_{u}(v), s(u)\right), s^{-1}\right), \quad s \in S,\left.s\right|_{u} \neq \mathbb{1},\left.s\right|_{u v} \neq \mathbb{1}$.

Proposition

If $n, r \geq 1$, then the following holds:

1. The graphs ${ }^{G} \Gamma_{n}(\mathbb{Q})^{G} \Gamma_{r},{ }^{G} \Gamma_{n+r}$ are isomorphic.
2. ${ }^{G} \Gamma_{n+r}$ is an unramified, d^{n} sheeted graph covering of ${ }^{G} \Gamma_{r}$.

Proposition

1. The first rotation map gives the $|X|$ disjoint copies of tile graph ${ }^{G} \Gamma_{r}^{\prime}$ indexed by $x \in X$.
2. In addition to the first rotation map, the second rotation map adds the edges between the copies of ${ }^{G} \Gamma_{r}^{\prime}$ and it produces the tile graph ${ }^{G} \Gamma_{r+1}^{\prime}$.
3. In addition to the first and second rotation maps, the third rotation map adds the edges between the post critical vertices of the tile graph ${ }^{G} \Gamma_{r+1}^{\prime}$ and it produces the Schreier graph ${ }^{G} \Gamma_{r+1}$.

Applying the first and second rotation maps to the tile graph ${ }^{G} \Gamma_{r}^{\prime}$ is

Proposition

Let Γ_{n} and Γ_{r} be Schreier graphs of the group generated by bounded automaton S. Then the first and second rotation maps of generalized replacement product $\Gamma_{n}(\mathrm{Q}) \Gamma_{r}$ and the n-th iteration of inflation are equivalent.

Examples: Generalized replacement product of graphs

${ }^{G r} \Gamma_{1}$
${ }^{G r} \Gamma_{1}^{\prime}$

${ }^{G r} \Gamma_{2}$

Examples: Generalized replacement product of graphs

Given a group generated by bounded automaton, what can be said about the Galois coverings of the corresponding Schreier graphs?

Theorem

If $\left|\Psi_{G}\right|=d$, then the Schreier graph ${ }^{G} \Gamma_{n+1}$ is a Galois covering of ${ }^{G} \Gamma_{n}$ with Galois group $\mathbb{G}=G a /\left(\left.{ }^{G} \Gamma_{n+1}\right|^{G} \Gamma_{n}\right) \simeq \Psi_{G}$.

In other words,
If $\left|\psi_{G}\right|=d$, then the root permutations ψ_{s} are the Frobenius automorphisms associated to ${ }^{G} \Gamma_{n+1}$ over ${ }^{G} \Gamma_{n}$.

Proof Sketch

- Recall that ${ }^{G} \Gamma_{n+r}$ is an unramified q-sheeted covering over ${ }^{G} \Gamma_{n}$. Take $r=1$, so we have a covering map $\pi:^{G} \Gamma_{n+1} \rightarrow^{G} \Gamma_{n}$ of degree d. (Use: Generalized replacement product of Schreier graphs.)
- Look at the lifts of every non-tile edge of the graph ${ }^{G} \Gamma_{n}$ which is of the form $e_{\left.\right|_{u}}=\{u, s(u)\}$, where $\left.s\right|_{u} \neq \mathbb{1}$.
Define a map $\sigma_{\left.s\right|_{u}}:{ }^{G} \Gamma_{n+1} \rightarrow{ }^{G} \Gamma_{n+1}$ such that

$$
\sigma_{\left.s\right|_{u}}\left(v x_{i}\right)=\left.v s\right|_{u}\left(x_{i}\right), \quad \forall v x_{i} \in X^{n+1}
$$

- By Self-similarity of G, we have

$$
\sigma\left(e_{s \mid u}\right)(x)=\psi_{\left.s\right|_{u}}(x), \text { for all } x \in X
$$

Therefore every such $\sigma\left(e_{\left.s\right|_{u}}\right)$ is an automorphism and they are finite in number.

- Use the facts : $\left|\Psi_{G}\right|=d$ and G has level transitive action to show there are exactly d such automorphisms.

$$
\Rightarrow \mathbb{G}=<\psi_{\left.s\right|_{u}} \mid s \in S, u \in X^{n} \text { with }\left.s\right|_{u} \neq \mathbb{1}>=\Psi_{G}
$$

- Every $\sigma\left(e_{s \mid u}\right)$ is compatible with the covering map ϕ.

L and zeta functions of Schreier graphs of FG

The covering $\widetilde{Y}={ }^{F G} \Gamma_{2}$ over the graph $Y={ }^{F G} \Gamma_{1}$ is 3-sheeted normal covering. In this case the Galois group is
$\mathbb{G}=<g=(1,2,3) \left\lvert\, g^{3}=e>\simeq \frac{\mathbb{Z}}{3 \mathbb{Z}}\right.$. We now write all matrices $A(g), g \in \mathbb{G}$.

$$
A(e)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right), \quad A(g)=A\left(g^{2}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The Artinized adjacency matrices $A_{\chi_{i}}$, where χ_{i} is an irreducible character of \mathbb{G}.

$$
A_{\chi_{1}}=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right), \quad A_{\chi_{2}}=A_{\chi_{3}}=A(e)
$$

Reciprocals of L functions for $\widetilde{Y} \mid Y$ are as follows

1) For $A_{\chi_{1}}$

$$
\zeta_{Y}(t)^{-1}=L\left(t, A_{\chi_{1}}, \widetilde{Y} \mid Y\right)^{-1}=\left(1-t^{2}\right)^{3}(t-1)(3 t-1)\left(3 t^{2}-t+1\right)^{2}
$$

2) As $A_{\chi_{2}}=A_{\chi_{3}}$

$$
\begin{gathered}
L\left(t, A_{\chi_{2}}, \widetilde{Y} \mid Y\right)^{-1}=L\left(t, A_{\chi_{3}}, \widetilde{Y} \mid Y\right)^{-1} \\
=\left(1-t^{2}\right)^{3}\left(3 t^{2}-t+1\right)^{2}\left(9 t^{4}-6 t^{3}+t^{2}-2 t+1\right)^{2}
\end{gathered}
$$

We have

$$
\begin{gathered}
\zeta_{\tilde{Y}}(t)^{-1}=\prod_{\chi_{i} \in\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}} L\left(t, A_{\chi_{i}}, \widetilde{Y} \mid Y\right)^{-1} \\
=\left(1-t^{2}\right)^{9}(t-1)(3 t-1)\left(3 t^{2}-t+1\right)^{4}\left(9 t^{4}-6 t^{3}+t^{2}-2 t+1\right)^{2} .
\end{gathered}
$$

Zeta and L functions of Schreier graphs of Basilica group

Reciprocals of L functions for $\widetilde{Y}\left|Y={ }^{B} \Gamma_{3}\right|^{B} \Gamma_{2}$:

1) For A_{1}
$\zeta_{\Gamma_{2}}(t)^{-1}=L\left(t, A_{1}, \widetilde{Y} \mid Y\right)^{-1}=\left(1-t^{2}\right)^{4}(t-1)(3 t-1)\left(3 t^{2}+1\right)\left(9 t^{4}-2 t^{2}+1\right)$.
2) For $A_{\sigma} L\left(t, A_{\sigma}, \widetilde{Y} \mid Y\right)^{-1}=\left(1-t^{2}\right)^{4}\left(3 t^{2}-2 t+1\right)$

$$
\times\left(27 t^{6}-18 t^{5}+3 t^{4}-4 t^{3}+t^{2}-2 t+1\right) .
$$

As $\widetilde{Y} \mid Y$ is normal covering, we have

$$
\begin{gathered}
\zeta_{\Gamma_{3}}(t)^{-1}=L\left(t, A_{1}, \widetilde{Y} \mid Y\right)^{-1} L\left(t, A_{\sigma}, \widetilde{Y} \mid Y\right)^{-1} \\
=\left(1-t^{2}\right)^{8}(t-1)(3 t-1)\left(3 t^{2}+1\right)\left(3 t^{2}-2 t+1\right)\left(9 t^{4}-2 t^{2}+1\right) \\
\left(27 t^{6}-18 t^{5}+3 t^{4}-4 t^{3}+t^{2}-2 t+1\right) .
\end{gathered}
$$

References

D. D'Angeli, A. Donno and E. Sava-Huss, Connectedness and isomorphism properties of the zig-zag product of graphs, J. Graph Theory 83 (2016) 120-151.
(Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
目 J. Fabrykowski and N. Gupta, On groups with sub-exponential growth functions, J. Indian Math. Soc. (N.S.) 49 (1987), 249-256.
R R Grigorchuk. Burnside problem on periodic groups. Funktsional. Anal. i Prilozhen., 14 (1980) 53-54.
R. I. Grigorchuk, Some topics in the dynamics of group actions on rooted trees, Proc. Steklov Institute of Mathematics 273 (2011) 64-175.

References ii

R. R. I. Grigorchuk and A. Żuk, Self-similarity and branching in group theory, London Mathematical Society Lecture Note Series 339 (2007) 36-93.
A. Shaikh, H. Bhate, Zeta functions of finite Schreier graphs and their zig-zag products, J. Algebra and Applications 16 (2017) 1750151.
A. Shaikh, D. D'Angeli, H. Bhate, D. Sheth, Galois coverings of Schreier graphs of groups generated by bounded automata, Preprint.
\square S. Sidki, Regular trees and their automorphisms, Monografias de Matematica, 56 (IMPA, Rio de Janeiro, 1998).
R. Sidki, E. F. Silva, A family of just-nonsolvable torsion-free groups defined on n-ary trees, Mat. Contemp. 21 (2001) 255274.

References iif

V. Nekrashevych, Self-similar Groups, Mathematical Surveys and Monographs 117 (American Mathematical Society, 2005).
(R. A. Terras, Zeta functions of graphs: A stroll through the garden 128 (Cambridge University Press, 2010).
For slides: http://creativecommons.org/licenses/by-sa/4.0/

Thank you very much for your attention!

[^0]: ${ }^{2}$ N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Mathematische

