Self-similar groups: old and new results

Said Najati Sidki Universidade de Brasilia

In 1998 Volodya Nekrashevych and I collaborated on the paper "Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2 endomorphisms" which appeared in print in 2004. Over the past 20 years this paper stimulated the development of many ideas about self-similarity in groups, some of which are treated here.

1 Self-similarity

A group G is self-similar if it is a state-closed subgroup of the automorphism group of an infinite regular one-rooted m-tree \mathcal{T}_m ; in particular, G is residually finite. If the action of G on the first level of \mathcal{T}_m is transitive we say that G is a transitive self-similar group. A group acting on the tree \mathcal{T}_m is finite-state provided each of its elements has a finite number of states. An automata group is a finitely generated self-similar and finite-state group.

Self-similar and automaton representations are known for groups ranging from the torsion groups of Grigorchuk and of Gupta-Sidki to Arithmetic groups (Kapovich, 2012) and to non-abelian free groups (Glasner-Mozes, 2005; Aleshin-Vorobets, 2007). Two softwares for computation in self- similar groups are available in GAP, by Bartholdi and by Muntyan-Savchuk. The logic of self-similar and automaton groups is complex. Two almost simultaneous results on unsolvability, shown in 2017: (1) P. Gillibert proved that deciding the order of an element in an automaton group unsolvable; (2) L. Bartholdi and I. Mitrofanov proved that the word problem in self-similar groups unsolvable.

2 Virtual Endomorphisms

We use the notion of virtual endomorphisms to produce transitive self-similar actions. This concept often corresponds to contraction which had already appeared in Lie Groups and in Dynamical Systems; eg. $2\mathbb{Z} \to \mathbb{Z}$ defined by $2n \longmapsto n$.

Given a general group G, consider a similarity pair (H, f)where H a subgroup of G of finite index m and f: $H \to G$ a homomorphism called a virtual endomorphism of G. If f is a monomorphism and the image H^f is also of finite index in G then H and H^f are commensurable in G and f is a virtual automorphism.

Given the pair (H, f) we produce by a generalized Kaloujnine-Krasner construction (abbreviated by K-K), a transitive state-closed representation of G on the m-tree (or simply of degree m) as follows: let $T = \{t_0 (= e), t_1, ..., t_{m-1}\}$ be a right transversal T of H in G and $\sigma : G \to Perm(T)$ be the transitive permutational representation of G on T induced from the action of the group on the right cosets of H. For each $g \in G$, we obtain: (1) its image g^{σ} under σ ,(2) an m-tuple of elements $(h_0, ..., h_{m-1})$ of H, called co-factors of g, defined by

$$h_i = (t_i g) \left((t_i)^{g^\sigma} \right)^{-1}.$$

Then, the Kaloujnine-Krasner theorem gives us a homomorphism of G into the wreath product

$$Hwr_{(T)}G^{\sigma}$$

defined by

$$\varphi_1: g \mapsto (h_i \mid \mathbf{0} \leq i \leq m-1) g^{\sigma}.$$

This homomorphism is regarded as a first approximation of a representation of G on the m-ary tree. We use the virtual endomorphism $f: H \to G$ to iterate the process infinitely:

$$\varphi: g \mapsto \left(\left((h_i)^f \right)^{\varphi} \mid \mathbf{0} \leq i \leq m-1 \right) g^{\sigma}.$$

The kernel of φ , called the *f*-core of *H*, is the largest subgroup *K* of *H* which is normal in *G* and is *f*-invariant (in the sense $K^f \leq K$). When the kernel of φ is trivial, the similarity pair (H, f) and *f* are said to be *simple*. A transitive state-closed group *G* of degree *m* determines a pair (G_0, π_0) where G_0 is the stabilizer of the 0-vertex and the projection π_0 is simple. On the other hand, a similarity pair (H, f) for *G* where [G, H] = m and *f simple* provides by the *K*-*K* construction a faithful transitive state-closed representation φ of *G* of degree *m* such that $[G^{\varphi}, H^{\varphi}] = m$.

Problem 1 There are just two faithful transitive stateclosed representations of the cyclic group $G = \langle a \rangle$ of order 2 on the binary tree $a \mapsto \sigma = (e, e)s$ with s the permutation (0, 1) and $a \mapsto \delta = (\delta, \delta)s$. On the other hand, K-K produces the unique representation $a \mapsto$ $\sigma = (e, e)s$. What is the exact relationship between selfsimilar representations and those produced by K-K?

3 Abelian groups

Two papers by Nekrachevych-S (2004). and Brunner-S (2010) develop a fairly general study of self-similar abelian groups.

Example 2 Let

$$G = \mathbb{Z}^{d} = \langle x_{1}, x_{2}, ..., x_{d} \rangle,$$

$$H = \langle mx_{1}, x_{2}, ..., x_{d} \rangle,$$

$$f : mx_{1} \mapsto x_{2} \mapsto x_{3} \mapsto ... \mapsto x_{d} \mapsto x_{1}.$$

Then with respect to this data, G is represented as a transitive automaton group on the m-ary tree:

$$egin{array}{rcl} lpha_1 &= & (e,e,...,e,lpha_2)\,\sigma, \ \textit{where}\ \sigma = & (0,1,...,m-1)\,, \ lpha_2 &= & (lpha_3,...,lpha_3)\,,...,lpha_d = & (lpha_1,...,lpha_1)\,. \end{array}$$

The class of abelian state-closed groups A is closed under topological closure and also under diagonal closure

(by adding the diagonals $a^z = (a, a, ..., a)$ for all $a \in A$). These facts allow exponentiation of elements of A by $\sum_{0 \le i \le m} \alpha_i z^i \in \mathbb{Z}_2[z]$ which translates abelian stateclosed groups language to a commutative algebra one over \mathbb{Z}_2 .

A faithful transitive self-similar representations of \mathbb{Z}^{ω} using transcendentals in \mathbb{Z}_2 :

Theorem 3 (Bartholdi-S, 2018) Let θ be a transcendental unit in \mathbb{Z}_2 . Consider the ring $R = \mathbb{Z} [1/(2\theta)]$. Let Gbe the additive group $G = R \cap \mathbb{Z}_2$ and $H = G \cap 2\mathbb{Z}_2$. Define $d : 2\mathbb{Z}_2 \to \mathbb{Z}_2$ by $a \mapsto a/(2\theta)$ and $f = d|_H :$ $H \to G$. Then, G is isomorphic to \mathbb{Z}^{ω} and the pair (H, f) is simple. However there does not exist a faithful automaton representation of \mathbb{Z}^{ω} .

Problem 4 Is there a faithful transitive self-similar representations of $(\mathbb{Z}_2)^{\omega}$?

4 Nilpotent groups

(with A. Berlatto, 2007)

Theorem 5 Let G be a general nilpotent group, H a subgroup of finite index m in G, $f \in Hom(H,G)$ and L = f-core(H). Then,

 $\operatorname{ker}(f) \leq \sqrt[H]{L} = \{h \in H : h^n \in L \text{ for some } n\},\$ the isolator of L in H.

Denote finitely generated torsion-free nilpotent groups of class c by \mathfrak{T}_c -groups.

Corollary 6 Let G be an \mathfrak{T}_c -group and (H, f) a simple similarity pair for G. Then, f is an almost automorphism of G. In the Malcev completion of G, the virtual endomorphism f becomes an automorphism of G.

Class 2 groups are rich in self similarity:

Theorem 7 Let G be an \mathfrak{T}_2 -group and H a subgroup of finite index in G. Then there exists a subgroup K of finite index in H which admits a simple **epimorphism** $f: K \to G$.

Given an integer m > 1, let l(m) be the number of prime divisors of m (counting multiplicities) and s(G) the derived length of G.

Theorem 8 Let G be an \mathfrak{T}_c -group and H a subgroup of finite index m in G. If

 $f: H \to G$ is simple then $s(G) \leq l(m)$.

There is no such bound for the nilpotency class c(G):

Example 9 There exists an ascending sequence of simple triples (G_n, H_n, f_n) where the G_n 's are metabelian 2-generated \mathfrak{T}_c -groups with $[G_n, H_n] = 4$ and nilpotency class c = n.

On non-existence:

Problem 10 J. Dyer (1970) constructed a rational nilpotent Lie algebra with nilpotent automophism group. The construction yields an \mathfrak{T}_c -group which does not admit a faithful transitive self-similar representation. The group is 2-generated \mathfrak{T}_6 -group with Hirsch length 9. Are there \mathfrak{T}_3 -groups which are not self-similar?

5 Metabelian groups

Self-similar representations of metabelian groups is the next central issue of study. The following treats those of split type.

Theorem 11 (Kochloukova-S) Let X be a finitely generated abelian group and B be a finitely generated, right $\mathbb{Z}X$ -module of Krull dimension 1 such that $C_X(B) =$ $\{x \in X \mid B(x-1) = 0\} = 1$. Then $G = B \rtimes X$ admits a faithful transitive self-similar representation.

The strategy of the proof : Show that there exists δ in $\mathbb{Z}X$ such that δB is of finite index in B and such that the map $f(\delta b) = b$ for all b in B is core-free. Define the subgroup $H = (\delta B) \rtimes X$ and extend f by $f|_X = id_X$. Then f defines a simple virtual endomorphism $f : H \to G$.

Under certain additional conditions, the group G from the above theorem is **finitely presented** and **of type** FP_m . The conditions come from the Bieri-Strebel theory of m-tame modules and its relation to the FP_m -Conjecture for metabelian groups.

6 Wreath Products

For wreath products of abelian groups, the guiding example is the lamplighter group $G = C_2 wrC$ (Grigorchuk-Zuk). It has a faithful transitive self-similar representation on the binary tree and is generated by s, α where s is the transposition (0, 1) and $\alpha = (\alpha, \alpha s)$.

Since we are dealing with residually finite groups, the following result of Gruenberg is fundamental.

Theorem 12 The wreath product G = BwrX is residually finite iff B, X are residually finite and either B is abelian or X is finite.

Theorem 13 (A. Dantas-S, 2017) Let G = BwrX be a transitive self-similar wreath product of abelian groups. If X is torsion free then B is a torsion group of finite exponent. Thus, $\mathbb{Z}wr\mathbb{Z}$ cannot have a faithful transitive self-similar representation. Let p be a prime number, $d \ge 1$ and define the groups $G_{p,d} = C_p wr C^d$.

Theorem 14 (A. Dantas-S, 2017) Let $d \ge 2$. Then $G_{p,d}$ does not have a faithful transitive self-similar representation on the p-adic tree but has such a representation on the p^2 -tree.

The groups $G_{p,d}$ belong to a general construction:

Theorem 15 (Bartholdi-S, 2018) Let B be finite abelian group, X a transitive self-similar group. Then, BwrXis a transitive self-similar and is finite-state whenever B and X are.

Remark 16 (Savchuk-S., 2016) There are non-trivial extensions of groups of type BwrX which are transitive automaton groups. An example of this is $G = (\langle x, y \rangle wr \langle t \rangle) \langle a \rangle$ where $\langle x, y \rangle$ is the 4-group, t has infinite order and a has order 2.

7 Linear Groups

Theorem 17 (Brunner-S, 1998) The affine groups $\mathbb{Z}^n \rtimes$ GL (n,\mathbb{Z}) are transitive automata groups of degree exponential in n. In particular and importantly, GL (n,\mathbb{Z}) is a finite-state group.

Problem 18 Does $GL(n, \mathbb{Z})$ admit a faithful self-similar representation for $n \ge 2$? Note that Z. Sunik produced in (Kapovich, 2012) a faithful self-similar action of $PSL(2, \mathbb{Z})$ on the 3-tree.

Reduction of tree-degree:

Theorem 19 (Nekrashevych-S, 2004) Let $B(n,\mathbb{Z})$ be the (pre-Borel) subgroup of finite index in $GL_n(\mathbb{Z})$ consisting of the matrices whose entries above the main diagonal are even integers. The affine linear groups $\mathbb{Z}^n \rtimes$ $B(n,\mathbb{Z})$ are realizable faithfully as transitive automata groups acting on the **binary** tree. Given a commutative algebra A we denote the upper triangular $m \times m$ matrix group, or Borel subgroup, with coefficients in A by U(m, A) and its projective quotient by PU(m, A) which is nilpotent-by-abelian.

Theorem 20 Let $n \ge 1$ be an integer, p be a prime number and

$$A = \mathbb{F}_p[x^{\pm 1}, \frac{1}{f_1}, \dots, \frac{1}{f_{n-1}}]$$

the subring of $\mathbb{F}_p(x)$, where $f_0 = x, f_1, \ldots, f_{n-1} \in F_p[x] \setminus F_p(x-1)$ are pairwise different, monic, irreducible polynomials. Then PU(m, A) is a transitive automaton group of degree p^l , where l is a cubic polynomial of degree m.

The metabelian version is

$$G = A \rtimes Q$$

where $Q = \langle x_0, x_1, ..., x_{n-1} \rangle \cong \mathbb{Z}^n$ and x_i acts on A as multiplication by f_i ($0 \le i \le n-1$). Let I = (x-1)A and let $H = I \rtimes Q$. Then [G:H] = p and the map f: $((x-1)r,q) \mapsto (r,q)$ is a simple epimorphism. The group G is finitely presented, of type FP_n , not of type FP_{n+1} .

Similar to $B(n, \mathbb{Z}]$), define $B(n, \mathbb{F}_p[x])$ as the subgroup of $GL_n(\mathbb{F}_p[x])$ consisting of the matrices whose entries above the main diagonal belong to the ideal $(x-1)\mathbb{F}_p[x]$.

Theorem 21 Let $n \ge 2$ be an integer, p a prime number and G the affine group $\mathbb{F}_p[x]^n \rtimes B(n, \mathbb{F}_p[x])$. Then Gis transitive, finite-state and state-closed of degree p.

Problem 22 The group here is not finitely generated when n = 2, yet is finitely generated for $n \ge 3$. When is it finitely presented?