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Regular rooted trees

Let X be a finite set called an alphabet, and let X ∗ be the set of
finite words over the alphabet X including the empty word, ∅.

X ∗ has the structure of the vertex set of a rooted tree, TX
∅

0 1

00 01 10 11

Definition

An automorphism of TX is a bijection from X ∗ to X ∗ which
preserves edge incidences.

Any such function on the finite words uniquely determines a
function on Xω, the set of infinite words. Likewise, any “prefix
relation preserving” function on Xω defines an automorphism of
the tree.

Rachel Skipper joint with Ben Steinberg
Generating Lamplighter-like Groups with Bireversible Automata



Regular rooted trees

Let X be a finite set called an alphabet, and let X ∗ be the set of
finite words over the alphabet X including the empty word, ∅.
X ∗ has the structure of the vertex set of a rooted tree, TX

∅

0 1

00 01 10 11

Definition

An automorphism of TX is a bijection from X ∗ to X ∗ which
preserves edge incidences.

Any such function on the finite words uniquely determines a
function on Xω, the set of infinite words. Likewise, any “prefix
relation preserving” function on Xω defines an automorphism of
the tree.

Rachel Skipper joint with Ben Steinberg
Generating Lamplighter-like Groups with Bireversible Automata



Regular rooted trees

Let X be a finite set called an alphabet, and let X ∗ be the set of
finite words over the alphabet X including the empty word, ∅.
X ∗ has the structure of the vertex set of a rooted tree, TX

∅

0 1

00 01 10 11

Definition

An automorphism of TX is a bijection from X ∗ to X ∗ which
preserves edge incidences.

Any such function on the finite words uniquely determines a
function on Xω, the set of infinite words. Likewise, any “prefix
relation preserving” function on Xω defines an automorphism of
the tree.

Rachel Skipper joint with Ben Steinberg
Generating Lamplighter-like Groups with Bireversible Automata



Regular rooted trees

Let X be a finite set called an alphabet, and let X ∗ be the set of
finite words over the alphabet X including the empty word, ∅.
X ∗ has the structure of the vertex set of a rooted tree, TX

∅

0 1

00 01 10 11

Definition

An automorphism of TX is a bijection from X ∗ to X ∗ which
preserves edge incidences.

Any such function on the finite words uniquely determines a
function on Xω, the set of infinite words. Likewise, any “prefix
relation preserving” function on Xω defines an automorphism of
the tree.

Rachel Skipper joint with Ben Steinberg
Generating Lamplighter-like Groups with Bireversible Automata



Regular rooted trees

Let X be a finite set called an alphabet, and let X ∗ be the set of
finite words over the alphabet X including the empty word, ∅.
X ∗ has the structure of the vertex set of a rooted tree, TX

∅

0 1

00 01 10 11

Definition

An automorphism of TX is a bijection from X ∗ to X ∗ which
preserves edge incidences.

Any such function on the finite words uniquely determines a
function on Xω, the set of infinite words. Likewise, any “prefix
relation preserving” function on Xω defines an automorphism of
the tree.

Rachel Skipper joint with Ben Steinberg
Generating Lamplighter-like Groups with Bireversible Automata



Finite State (Mealy) Automata

Definition

A finite state (Mealy) automaton is A is a 4-tuple A = (Q,X , δ, λ)
where Q is finite a set of states, X is a finite alphabet,
δ : Q × X → Q is the transition function, and λ : Q × X → X is
the output function. For each q ∈ Q and x ∈ X , we will use the
notation λq(x) to mean λ(q, x).

Described by a directed, labeled graph with vertices labeled by Q
and edges

q
x |λq(x)−−−−−→ δ(q, x)

λq extends to a function X ∗ and Xω:

λq(x0, x1, . . . , xn) = λq(x0)λδ(q,x0)(x1, . . . , xn)

and
λq(x0, x1, . . .) = lim

n→∞
λq(x0, x1, . . . , xn).
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Finite State (Mealy) Automata

Definition by example: The Alëshin Automaton

b

a

c

0 | 1

1 | 0
0 | 1

0 | 0
1 | 1

1 | 0

Each state gives a function from Xω → Xω.
A is invertible if, for each q, λq is a permutation of the alphabet.
In this case, states define automorphisms of TX .
The group generated by the states of A is called the automaton
group for A and denoted G(A).
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Duals and inverses

For an A = (Q,X , δ, λ), its dual automaton ∂A is given by
(X ,Q, λ, δ), i.e., the alphabet and states are interchanged and the
output and transition functions are interchanged.

b

a

c

0 | 1

1 | 0 0 | 1

0 | 0
1 | 1

1 | 0

0 1c | a c | a

a | c b | b

a | b b | c
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Duals and inverses

For an A = (Q,X , δ, λ), its dual automaton ∂A is given by
(X ,Q, λ, δ), i.e., the alphabet and states are interchanged and the
output and transition functions are interchanged.

The inverse automaton A−1 is obtained by switching the input and
output letters on the edge labels. In this case, the inverse to λq is
computed by the state corresponding to q in A−1.

Taking the dual and inverse iteratively produces up to 8 unique
automata. If A and ∂A are invertible, A is called reversible.

If A, ∂A, and ∂A−1 are invertible, A is called bireversible. In this
case, all 8 possible automata are invertible.
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Duals and inverses
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Why bireversible automaton groups?

First examples of free groups and virtually free groups as
automaton groups were bireversible

Bireversible automaton groups act essentially freely on the
boundary of the rooted tree hence, one can potentially compute
spectral measures for their random walks via the action on the tree.
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Lamplighter like groups

By a lamplighter-like group we mean a restricted wreath product
A o Z =

⊕
Z Ao Z with A a finite abelian group.

Various automaton representations of lamplighter like groups have
been found (Grigorchuk, Żuk, Nekrashevych, Sushanksii, Sidki,
Savchuk, Steinberg, Silva, Sunik̆, Juschenko, Wesolek,
Bartholdi.....)

Bondarenko, D’Angeli, and Rodaro constructed (Z/3Z) o Z as a
bireversible automaton group (2016).

Likewise, Ahmed and Savchuk realized (Z/2Z)2 o Z as a
bireversible automaton group (2018).
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been found (Grigorchuk, Żuk, Nekrashevych, Sushanksii, Sidki,
Savchuk, Steinberg, Silva, Sunik̆, Juschenko, Wesolek,
Bartholdi.....)

Bondarenko, D’Angeli, and Rodaro constructed (Z/3Z) o Z as a
bireversible automaton group (2016).

Likewise, Ahmed and Savchuk realized (Z/2Z)2 o Z as a
bireversible automaton group (2018).

Rachel Skipper joint with Ben Steinberg
Generating Lamplighter-like Groups with Bireversible Automata



Lamplighter like groups

By a lamplighter-like group we mean a restricted wreath product
A o Z =

⊕
Z Ao Z with A a finite abelian group.

Various automaton representations of lamplighter like groups have
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Rational power series approach

Let R be a finite commutative ring with 1, used as our alphabet.

Identify Rω with R[[t]] via

(r0, r1, r2, . . . ) 7→ r0 + r1t + r2t
2 + · · ·

Then for any f ∈ R[[t]] define two functions µf and αf on Rω

given by
µf : g(t) 7→ f (t)g(t)

αf : g(t) 7→ f (t) + g(t)

Exercise: For f invertible, these define automorphisms of TR and
for µf αhµf −1 = αfh.
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Rational power series approach

Fix now f = r
(
1−at
1−bt

)
with r ∈ R× and a, b ∈ R.

Proposition (S, Steinberg)

Let f (t) = r
(
1−at
1−bt

)
where r ∈ R× and a, b ∈ R. Then µf is finite

state with set of states {α−sraµf αsb : s ∈ R}. Moreover, for any
s ∈ R, the state α−sraµf αsb permutes the degree zero terms via:

s̃ 7−→ r(s̃ + (b − a)s).

We can associate to f a finite state automaton Af with states
{α−sraµf αsb : s ∈ R}. Transition and output functions are

δ(α−sraµf αsb, s̃) = α−(sb+s̃)raµf α(sb+s̃)b

and
λ(α−sraµf αsb, s̃) = r(s̃ + (b − a)s)
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Rational power series approach

Theorem (S, Steinberg)

Let

f (t) = r

(
1− at

1− bt

)
where r ∈ R× and a, b ∈ R. If a− b ∈ R×, then
G(Af ) = 〈α−sraµf αsb : s ∈ R〉 ∼= R+ o Z.

Proof.

(Sketch) α−sraµf αsb = α−sra+sbf µf = αs(−ar+bf )µf so we can
consider the generating set {αs(−ar+bf ), µf : s ∈ R}.
Moreover, µf mαs(−ar+bf )µf −m = αs(−ar+bf )f m .
If b − a a unit, then (−ar + bf )f m is linearly independent over R
(in fact if and only if). And so,
N = 〈αs(−ar+bf )f m : m ∈ Z〉 ∼=

⊕
Z R

+.
N is normal and torsion and so intersects 〈µf 〉 ∼= Z trivially and so
G(Af ) ∼= R+ o Z .
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Rational power series approach

Theorem (S, Steinberg)

Let

f (t) = r

(
1− at

1− bt

)
where r ∈ R×, a, b ∈ R and a− b is a unit. Then Af has |R|
states. Moreover,

1 Af is reversible if and only if b is a unit.

2 (Af )−1 is reversible if and only if a is a unit.

3 Af is bireversible if and only if both a and b are units.
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Commutative rings with a, b and a-b units

Theorem (S, Steinberg)

Let A be a finite abelian group. Then there is a finite commutative
ring R with R+ ∼= A and two elements a, b ∈ R× with a− b ∈ R×

if and only if A ∼= A1 ⊕ A2 where A1 has odd order and
A2
∼= (Z/2Z)a1 ⊕ (Z/22Z)a2 ⊕ · · · ⊕ (Z/2tZ)at with ai 6= 1 for all

1 ≤ i ≤ t.

Corollary

For any finite abelian group described in the last theorem, there
exists a bireversible automaton generating A o Z.
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Examples

0

2

1

0 | 0 1 | 2

2 | 1

0 | 1

2 | 2

1 | 0

0 | 2

1 | 1

2 | 0

Figure: The bireversible automaton given by Bodarenko, D’Angeli,

Rodaro for Z/3Z o Z and corresponding to f (t) = 2

(
1− 2t

1− t

)
.(Observed

by Bondarenko and Savchuk)
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Examples

0

1 2

3

45

1 | 1
4 | 3

0 | 5

3 | 1

5 | 3
2 | 5

4 | 1
1 | 3

3 | 5

0 | 1

2 | 3
5 | 5

2 | 2

2 | 0
1 | 0

1 | 4

0 | 40 | 2

5 | 2

5 | 0

4 | 0

4 | 4

3 | 4 3 | 2

3 | 3

0 | 3

2 | 1

5 | 1

1 | 5
4 | 5

0 | 0

5 | 4 4 | 2

3 | 0

2 | 41 | 2

Figure: An automaton which generates Z/6Z o Z for f =
1− 3t

1− 2t
that is

not reversible and whose inverse is also not reversible.
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Examples

Take O = Z2[ζ] with ζ a third root of unity and
R = O/4O ∼= Z/4Z[ζ]. Taking r = 1, a = 1, and b = 2 + ζ, we
find that a, b, and b − a are all units with inverses 1, 3 + ζ, and
1 + ζ respectively. R+ ∼= (Z/4Z)2.

state \ letter 0 1 2 3 ζ 1 + ζ 2 + ζ 3 + ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ

0 0 1 2 3 x 1 + ζ 2 + ζ 3 + ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ

1 2 + ζ 3 + ζ ζ 1 + ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 3ζ 3 + 3ζ 3ζ 1 + 3ζ 2 3 0 1

2 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 0 1 2 3 ζ 1 + ζ 2 + ζ 3 + ζ

3 2 + 3ζ 3 + 3ζ 3ζ 1 + 3ζ 2 3 0 1 2 + ζ 3 + ζ ζ 1 + ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 2ζ

ζ 3 + ζ ζ 1 + ζ 2 + ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ 3 0 1 2

1 + ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 3ζ 1 2 3 0 1 + ζ 2 + ζ 3 + ζ ζ

2 + ζ 3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ 3 0 1 2 3 + ζ ζ 1 + ζ 2 + ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ

3 + ζ 1 2 3 0 1 + ζ 2 + ζ 3 + ζ ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 3ζ

2ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 3ζ 3 + 3ζ 3ζ 1 + 3ζ 2 3 0 1 2 + ζ 3 + ζ ζ 1 + ζ

1 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 0 1 2 3 ζ 1 + ζ 2 + ζ 3 + ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ

2 + 2ζ 2 3 0 1 2 + ζ 3 + ζ ζ 1 + ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 3ζ 3 + 3ζ 3ζ 1 + 3ζ

3 + 2ζ ζ 1 + ζ 2 + ζ 3 + ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 0 1 2 3

3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 3ζ 1 2 3 0 1 + ζ 2 + ζ 3 + ζ ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 2ζ

1 + 3ζ 3 0 1 2 3 + ζ ζ 1 + ζ 2 + ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ

2 + 3ζ 1 + ζ 2 + ζ 3 + ζ ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 3ζ 1 2 3 0

3 + 3ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ 3 0 1 2 3 + ζ ζ 1 + ζ 2 + ζ

Table: The transition table for f = r

(
1− at

1− bt

)
with r = 1, a = 1, and

b = 2 + ζ.
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Examples

Take O = Z2[ζ] with ζ a third root of unity and
R = O/4O ∼= Z/4Z[ζ]. Taking r = 1, a = 1, and b = 2 + ζ, we
find that a, b, and b − a are all units with inverses 1, 3 + ζ, and
1 + ζ respectively. R+ ∼= (Z/4Z)2.

state \ letter 0 1 2 3 ζ 1 + ζ 2 + ζ 3 + ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ

0 0 1 2 3 ζ 1 + ζ 2 + ζ 3 + ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ

1 1 + ζ 2 + ζ 3 + ζ ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 3ζ 1 2 3 0

2 2 + 2ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 3ζ 3 + 3ζ 3ζ 1 + 3ζ 2 3 0 1 2 + ζ 3 + ζ ζ 1 + ζ

3 3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ 3 0 1 2 3 + ζ ζ 1 + ζ 2 + ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ

ζ 3 0 1 2 3 + ζ ζ 1 + ζ 2 + ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ

1 + ζ ζ 1 + ζ 2 + ζ 3 + ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 0 1 2 3

2 + ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 3ζ 1 2 3 0 1 + ζ 2 + ζ 3 + ζ ζ

3 + ζ 2 + 3ζ 3 + 3ζ 3ζ 1 + 3ζ 2 3 0 1 2 + ζ 3 + ζ ζ 1 + ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 2ζ

2ζ 2 3 0 1 2 + ζ 3 + ζ ζ 1 + ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 3ζ 3 + 3ζ 3ζ 1 + 3ζ

1 + 2ζ 3 + ζ ζ 1 + ζ 2 + ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ 3 0 1 2

2 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 0 1 2 3 ζ 1 + ζ 2 + ζ 3 + ζ

3 + 2ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 3ζ 1 2 3 0 1 + ζ 2 + ζ 3 + ζ ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 2ζ

3ζ 1 2 3 0 1 + ζ 2 + ζ 3 + ζ ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 3ζ

1 + 3ζ 2 + ζ 3 + ζ ζ 1 + ζ 2 + 2ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 3ζ 3 + 3ζ 3ζ 1 + 3ζ 2 3 0 1

2 + 3ζ 3 + 2ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ 3 0 1 2 3 + ζ ζ 1 + ζ 2 + ζ

3 + 3ζ 3ζ 1 + 3ζ 2 + 3ζ 3 + 3ζ 0 1 2 3 ζ 1 + ζ 2 + ζ 3 + ζ 2ζ 1 + 2ζ 2 + 2ζ 3 + 2ζ

Table: The output table for f = r

(
1− at

1− bt

)
with r = 1, a = 1, and

b = 2 + ζ.
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Thank you!

skipper@math.binghamton.edu
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