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Preliminaries



tldc groups
Definition: A (Hausdorff) group G is locally compact (“lc”) if it
has a locally compact topology s.t. the group operations are
continuous.

Structure theory of lc groups begins with the following
observation:

• Let G be a lc group & C be the connected component of 1G

• Then C � G closed (and thus also lc)
• Since C is maximally connected, the quotient G/C is totally

disconnected (but still lc).
• C is connected lc, and G/C is tdlc
• By solution to Hilbert’s 5th problem, every connected lc

group is the inverse limit of Lie groups
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Permutation groups
Definition: A permutation group G ≤ Sym (Ω) is
subdegree-finite if orbits of point stabilisers are always finite.

Example: Aut (Γ), where Γ is a locally-finite connected graph

Observation: Sym (Ω) is a topological group under the
permutation topology

(stabilisers of finite subsets of Ω form a neighbourhood basis of
the identity)

Convention: Permutation groups in this talk will be topological
groups under the permutation topology

Decompositions of permutation groups:
• If G ≤ Sym (Ω) admits a G-invariant equivalence relation

on Ω then G decomposes:
– G permutes the classes
– G{C} induces a permutation group on each class C

• A transitive group that admits no nontrivial decomposition
like this is called primitive
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tldc groups & permutation groups

Canonical permutation representations of tdlc groups:
• A tdlc group G has a compact open subgroup U by van

Dantzig’s Theorem
• Let Ĝ be the permutation group induced by G y Ω := G/U

Fact: If G is tdlc then Ĝ is:
• closed (easy to check)
• subdegree-finite (by compactness of U )

Fact: If G ≤ Sym (Ω) is closed and subdegree-finite then point
stabilisers are:
• open (by definition)
• compact (by Tychanoff)

and G is tdlc.
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• closed (easy to check)
• subdegree-finite (by compactness of U )

Fact: If G ≤ Sym (Ω) is closed and subdegree-finite then point
stabilisers are:
• open (by definition)
• compact (by Tychanoff)

and G is tdlc.



tldc groups & permutation groups

Canonical permutation representations of tdlc groups:
• A tdlc group G has a compact open subgroup U by van

Dantzig’s Theorem
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• closed (easy to check)
• subdegree-finite (by compactness of U )

Fact: If G ≤ Sym (Ω) is closed and subdegree-finite then point
stabilisers are:
• open (by definition)
• compact (by Tychanoff)

and G is tdlc.



tldc groups & permutation groups

Canonical permutation representations of tdlc groups:
• A tdlc group G has a compact open subgroup U by van

Dantzig’s Theorem
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Compactly generated tdlc groups
Definition: G is compactly generated if G = 〈S〉 for some
compact set S ⊆ G

Example: If Γ is a vertex-transitive, locally-finite, connected
graph, then Aut (Γ) is compactly generated & tdlc

We now apply groups acting on trees to two types of
“indecomposable” compactly generated tdlc groups:

• S: non-discrete compactly generated, topologically simple
tdlc groups

• P: closed & subdegree-finite permutation groups that are
primitive but not regular
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Groups acting on trees



Groups acting on trees

B(v) = neighbours of v

Each edge is two arcs:

a & a

A(v) arcs from v

A(v) arcs to v

Suppose F ≤ Sym (3)

G ≤ Aut T is locally-F :
Gw

∣∣
B(w)

∼= F ∀w ∈ V T
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N ≤ Sym (Y )
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– M,N transitive =⇒ U(M,N) contains a (permutationally)

isomorphic copy of every locally-(M,N) subgroup of Aut T
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g ∈ Aut T lies in UL(M,N) iff

• g fixes VX and VY setwise
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∣∣
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A(v)
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∣∣−1
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∈M for all v ∈ VX

• L
∣∣
A(gw)

g
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A(w)
L
∣∣−1

A(w)
∈ N for all w ∈ VY

A different choice for L gives a permutationally isomorphic
group
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Simplicity of U := U(M,N)

Fact: By definition, the following holds for all arcs a in T :

• ∀h ∈ Ua there exists h∗ ∈ Ua that:
– h∗ fixes the half-tree Ta pointwise &
– h∗ and h have the same action on the half-tree Ta
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TāTa



Simplicity of U := U(M,N)

Fact: By definition, the following holds for all arcs a in T :

• ∀h ∈ Ua there exists h∗ ∈ Ua that:
– h∗ fixes the half-tree Ta pointwise &
– h∗ and h have the same action on the half-tree Ta

a
TāTa
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TāTa



Simplicity of U := U(M,N)

Fact: By definition, the following holds for all arcs a in T :

• ∀h ∈ Ua there exists h∗ ∈ Ua that:
– h∗ fixes the half-tree Ta pointwise &
– h∗ and h have the same action on the half-tree Ta

Hence U has Tits’ Property (P)

If M or N are transitive then:

• U is equal to U+, where
U+ := 〈U(v,w) : {v, w} ∈ ET 〉
• U fixes no end
• No proper nonempty subtree is
U -invariant

a
TāTa
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Non-discreteness of U(M,N)

Theorem. U := U(M,N) is discrete if and only if M and N are
semiregular.

Proof: U discrete ⇐⇒ ∃ finite Φ ⊆ V T s.t. U(Φ) is trivial.
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TāTa



Non-discreteness of U(M,N)

Theorem. U := U(M,N) is discrete if and only if M and N are
semiregular.

Proof: U discrete ⇐⇒ ∃ finite Φ ⊆ V T s.t. U(Φ) is trivial.

(⇒)

a
TāTa
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Corollary. If M,N ∈ P, then U(M,N) ∈ S.
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Application 1: Simple tdlc groups
Natural question: how large, up to isomorphism, is S?

Theorem (S.) Up to isomorphism, there are 2ℵ0 groups in S.
Moreover, there are 2ℵ0 that all have the same compact open
subgroup

Proof:
• Idea: Plug suitable discrete groups M into U(M, Sym (3)).
• If Q1, Q2 are nonisomorphic Tarski–Ol’Shanskiı̆ Monsters

of order p (as primitive permutation groups),

U(Q1,Sym (3)) 6∼= U(Q2, Sym (3)).

• Each U(Qi, Sym (3)) lies in S & there are 2ℵ0 choices for Qi
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Application 2: Primitive perm. reps. of tdlc groups

Definition: Let M �N be the permutation group induced by the
action of U(M,N) on VY .

Theorem (S.) If Ĝ ∈ P is infinite, then:

Ĝ ≤prim (((K WrFn) � Fn−1) Wr · · ·� F2) WrF1

where:
• F1, . . . , Fn are finite & transitive
• K ∈ P is finite or one-ended & almost topologically simple
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– Find conditions (other than FA) on Mi, Ni to guarantee that
U(M1, N2) 6∼= U(M2, N2)

• Local isomorphisms (Pierre-Emmanuel Caprace):
– Two topological groups are called locally isomorphic if they

contain isomorphic open subgroups.
– Is the number of local isomorphism classes of groups in S
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