
from ”Ascension”

Saint Peter cried: Alack, alack!
Philosophy’s but the trade of a quack.

In truth it is a puzzle to me
Why people study philosophy.

It is such tedious and profitless stuff,
And is moreover godless enough;

In hunger and doubt their votaries dwell,
Till Satan carries them off to hell.”

Heinrich Heine
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Regular rooted ternary tree X ∗

X = {0, 1, 2}

level 0 = X 0 ε

0

yy

1

��

2

%%level 1 = X 0

0

��

1

��

2

��

1

0

��

1

��

2

��

2

0

��

1

��

2

��level 2 = X 2 00 01 02 10 11 12 20 21 22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Representation of tree automorphisms through portraits

automorphims oo // portraits

Aut(X ∗) oo // Σ(X )X
∗

g : X ∗ → X ∗ oo // g : X ∗ → Σ(X )

g |(ε)

0

ww

1

''
g |(0)

0

��

1

��

g |(1)

0

��

1

��

g |(00) g |(01) g |(10) g |(11)

g(x1x2x3 . . . ) = g |(ε)(x1) g |(x1)(x2) g |(x1x2)(x3) . . .

g(ux) = g(u) g |(u)(x)
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Section at u as a map σu : Aut(X ∗)→ Aut(X ∗)

gσu = g |u
where g |u is the unique automorphism of X ∗ for which

g(uw) = g(u)g |u(w).

X ∗
g |u

//

prepu

��

X ∗OO

delpg(u)

X ∗
g
// X ∗

w � g |u
//

prepu

��

w ′OO

delpg(u)

uw � g
// g(u)w ′

ε

ww ''

�� ��u

g

))

w

��

g(u)

w ′

��uw

g

$$ g(u)w ′
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Section at u as a map σu : ΣX ∗ → ΣX ∗

ε

vv ((

�� ��u

g

))

w

��

g(u)

w ′

��uw

g

$$ g(u)w ′

σu : ΣX∗ → ΣX∗

(gσu)|(w) = g |(uw)

(g |u)|(w) = g |(uw)
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Section at u as a map σu : ΣX ∗ → ΣX ∗

g © ε

u

��
� u

w
��
�uw

g |u � ε

w
��
�w

σu : ΣX∗ → ΣX∗

(gσu)|(w) = g |(uw)

(g |u)|(w) = g |(uw)
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Section at u as a map σu : ΣX ∗ → ΣX ∗

g © ε

u

��
� u

w
��
�uw

g |u � ε

w

��
�w

σu : ΣX∗ → ΣX∗

(gσu)|(w) = g |(uw)

(g |u)|(w) = g |(uw)
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Calculus of sections: section of a section is a section

(g |u)|v = g |uv
(gσu)σv = gσuv

The tree (the semigroup X ∗ acts back)

Aut(X ) x X ∗
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Calculus of sections

Section of a composition is composition of sections (on the same
level)

(hg)|u = h|g(u) g |u
Section of the inverse is the inverse of a section (on the same level)

(g−1)|u = (g |g−1(u))−1
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Photo from the last lecture
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That’s me explaining, for the 12th time, what a section is
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Topological (metric) structure on ΣX ∗

Two portraits are “close” when they agree on “many” levels:

d(g , h) = inf{ dn | (∀m ≤ n)(∀u ∈ Xm) g |(u) = h|(u) }

where dn ↘ 0 (popular choices: 1
n+1 , 1

en , ...).

- The topology is the direct product topology on ΣX∗ , where Σ is
discrete (thus, Cantor set)
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Closures w.r.t. group, metric, and self-similarity structure

self-similar group

��

〈
S̃
〉

closed, self-similar group
(group tree shift)

tt

closed group
''

〈S〉
〈
S̃
〉

S̃
closed, self-similar set

(tree shift)
ww

group
77
〈S〉 S S̃

self-similar set
(shift-invariant set)gg

closed set

DD

S setii
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The three structures cooperate

Theorem

The subgroup generated by a self-similar set is self-similar.

Theorem

The closure of a subgroup is a subgroup.

Theorem

The closure of a self-similar set is self-similar.

Theorem

Aut(X ∗) is a topological group.

Theorem

The action ΣX∗ x X ∗ is by continuous maps.
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Examples of closed, self-similar groups

Aut(X ∗)

Autp(X ∗) = p-ary automorphisms,
where p is a prime, X = {0, 1, . . . , p − 1}, and all vertex
permutations are powers of the standard cycle (012 . . . p − 1).

More generally, AutΣ′(X
∗) = (Σ′)X

∗
where Σ′ is a subgroup

of Σ.

?
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Examples of closed, self-similar groups
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of Σ.
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Examples of self-similar groups

Autf (X ∗) = finitary automorphisms = automorphisms whose
vertex permutations are trivial below some level =
automorphisms with only finitely many nontrivial vertex
permutations (this is a countable, locally finite group)

More generally, for Σ′′ ≤ Σ′ ≤ Σ, automorphisms whose
vertex permutations come from Σ′, but only finitely many are
outside of Σ′′.

Autf .r .(X
∗) = automorhisms finitary along rays =

automorphisms that, along every ray, have only finitely many
nontrivial vertex permutations

More generally, for Σ′′ ≤ Σ′ ≤ Σ, automorphisms whose
vertex permutations come from Σ′, but, along every ray, only
finitely many are outside of Σ′′.

?

Note that Autf (X ∗) and Autf .r (X ∗) are dense in Aut(X ∗) and, in
the more general cases, the closures are equal to AutΣ′(X

∗).
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permutations (this is a countable, locally finite group)

More generally, for Σ′′ ≤ Σ′ ≤ Σ, automorphisms whose
vertex permutations come from Σ′, but only finitely many are
outside of Σ′′.

Autf .r .(X
∗) = automorhisms finitary along rays =

automorphisms that, along every ray, have only finitely many
nontrivial vertex permutations

More generally, for Σ′′ ≤ Σ′ ≤ Σ, automorphisms whose
vertex permutations come from Σ′, but, along every ray, only
finitely many are outside of Σ′′.

?

Note that Autf (X ∗) and Autf .r (X ∗) are dense in Aut(X ∗) and, in
the more general cases, the closures are equal to AutΣ′(X

∗).
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How to build more examples?

Start with a self-similar set, generate a self-similar group, then
close it topologically.

Moreover, in order to obtain “small” examples, start with “small”
self-similar sets.

Zoran Šunić Hofstra University Group tree shifts II



Finite state automorphisms

Definition

g ∈ Aut(X ∗) is a finite-state automorphism if it has finitely many
distinct sections (its orbit under X ∗ is finite).
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The portrait of an automorphism as a Moore automaton
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The portrait of an automorphism as a Moore automaton
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The portrait of an automorphism as a Moore automaton
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The portrait of an automorphism as a Moore automaton
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Grigorchuk automaton {id , a, b, c , d}

©
0

vv
1

((

b

�

0,1 ""

a
©

0
oo

1 ""

c

©

0,1

ZZid ©
0

oo

1tt

d
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An automaton is

a finite self-similar set of tree automorphisms.

a finite set of tree automorphisms closed under taking
sections.

a finite set of finite-state tree automorphisms.

a finite X ∗-invariant set of tree automorphisms

a finite union of finite orbits of the action Aut(X ∗) x X ∗

a finite graph S with vertices labeled by permutations in Σ(X )
and,for each x ∈ X and s ∈ S one outgoing edge starting at s
labeled by x .

(additional words sometimes used: finite, Moore, transducer, ...)
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From an automaton back to a portrait

©

2

��

b
0

zz

1

$$
�

0,1,2
$$

a �

0,1,2
zz

a′

©

0,1,2

ZZid

b|(u) = the label on the state reached by reading u starting from b
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From an automaton back to a portrait

© ε

0

ww
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��
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1
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1

��

2

��
©00 ©01 ©02 ©10 ©11 ©12 �20 �21 ©22

. . . . . . . . . . . . . . . . . . . . . . . . . . .

With the interpretation © = (), � = (012) and � = (021)
〈id , a, a′, b〉 = Gupta-Sidki 3-group.
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From an automaton back to a portrait
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Autfs(X
∗) = finite state automorphisms

Proposition

(a) Autfs(X ∗) ≤ Aut(X ∗).
(b) Autfs(X ∗) is self-similar.
(c) Autfs(X ∗) is dense in Aut(X ∗).

Proof.

(a) Because sections of a product (inverse) are products (inverses)
of sections.
(b) Because sections of sections are sections.
(c) Because it contains Autf (X ∗).
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Examples are now easy to generate, but ...

How does the closure of the group generated by

©

0,1

��

id �
0,1

oo
a

©0oo

1

��

b

look like? How to describe/characterize/recognize its elements?
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How to describe a set of portraits?

In fact, let us simplify the question and look at the rooted tree of
arity 1.

level 0 = X 0 ε

0

yy

1

��

2

%%level 1 = X 0

0

��

1

��

2

��

1

0

��

1

��

2

��

2

0

��

1

��

2

��level 2 = X 2 00 01 02 10 11 12 20 21 22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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How to describe a set of portraits?

In fact, let us simplify the question and look at the rooted tree of
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How to describe a set of portraits?

In fact, let us simplify the question and look at the rooted tree of
arity 1.

level 0 = X 0 ε

0

��
level 1 = X = {0} 0

0

��
level 2 = X 2 00

...
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Aut(X ∗) is trivial, but the rest of the “story” is not

A mighty giant’s standing.
He hath a sword, and moves not,

Heinrich Heine

X ∗ =
ε

0 //

0

0 //

00

0 //

000

0 // . . .

N =
s // s // s // s // . . .

ΣX∗ = ΣN = sequences over the finite alphabet Σ

Zoran Šunić Hofstra University Group tree shifts II



Aut(X ∗) is trivial, but the rest of the “story” is not

N =
s // s // s // s // . . .

ΣX∗ = ΣN = sequences over the finite alphabet Σ

g |(u) = the term of the sequence g at u

Two sequences are “close” if they agree on a “long” initial segment
d(g , h) = inf{ dn | |u| = n, g |(u) = h|(u) }
The section map σ0 is just the shift map σ : ΣN → ΣN

(gσ)|(u) = g |(0u)

g = �
0 //�

0 //© 0 //�
0 //�

0 //© 0 // . . .

gσ = �
0 //© 0 //�

0 //�
0 //© 0 //�

0 // . . .

gσ
2

= © 0 //�
0 //�

0 //© 0 //�
0 //�

0 // . . .
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Closures w.r.t. the topological and self-similarity structures

closed, shift-invariant set
(subshift)

(also called shift)

)) S̃

closed set 77 S S̃ self-similar set
shift-invariant setee

S sethh

S = set of sequences (configurations, points in the configuration space)

S = the smallest closed set containing S

S̃ = the smallest shift-invariant set containing S

S̃ = the smallest closed and shift-invariant set containing S
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Finite state is same as periodic

finite state = finite orbit under shift(s) = periodic

g = �
0 //�

0 //© 0 //�
0 //�

0 //© 0 // . . .

gσ = �
0 //© 0 //�

0 //�
0 //© 0 //�

0 // . . .

gσ
2

= © 0 //�
0 //�

0 //© 0 //�
0 //�

0 // . . .

�

0

%%g �

0rr

gσ

©0

PP

gσ
2
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Finite self-similar (shift-invariant) sets as automata

Automaton = finite graph S with vertices labeled by symbols in Σ
and,for each x ∈ X and s ∈ S one outgoing edge starting at s
labeled by x .

�

0

&&g �

0
tt

gσ ©
0

""

1
<<

id
�

0

``

1

~~

a
©0oo

1

��

b

©
0

PP

gσ
2
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Finite self-similar sets as (deterministic) automata

Every state describes/defines exactly one element.

�
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&&g �

0
tt

gσ ©
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<<
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``
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~~
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©0oo
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b
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gσ
2

�
0 //�

0 //© 0 // . . . ©
0

ww

1

''
�0
��

1
��

©
0
��

1
��

© © � ©
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Enough pictures, now some serious math:

How to describe/define subsets of ΣN

Use S1S
monadic second order formalism of the one successor structure X ∗
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How to describe/define subsets of ΣN

Use S1S
monadic second order formalism of the one successor structure X ∗
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S1S

first order varaiables: x , y , z , . . . (range over vertices in X ∗)
second order varaibles: X ,Y ,Z , . . . (range over subsets of X ∗)
successor: s (s(u) is interpreted as the successor of u in X ∗)
—————————————————————–
equality symbol: =
membership symbol: ∈
quantifiers: ∀,∃
logical connectives: ¬,∧,∨, =⇒
parentheses: ( and )
basic terms: x
terms: for every term t, the expression s(t) is also a term.
atomic formulas: t1 = t2, X = Y , t ∈ X .
formulas: for all formulas Φ and Ψ the following are also formulas

(¬Φ), (Φ ∧Ψ), (Φ ∨Ψ), (Φ =⇒ Ψ),
(∃x Φ), (∃X Φ), (∀x Φ), (∀X Φ).
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Every formula defines a subset of ΣX ∗

Φ : X is a subset of Y

Φ : ∀x (x ∈ X =⇒ x ∈ Y )

There are 2 free variables, X and Y . Thus, we set

Σ =

{(
1

1

)
,

(
1

0

)
,

(
0

1

)
,

(
0

0

)}
A sequence over Σ defines a pair of subsets of X ∗,
the top labels describe the (characteristic function of the) set X ,
the bottom labels describe the set Y .

The set of sequences in ΣX∗ defined by Φ is the set of sequences
that do not use the symbol

(1
0

)
(this symbol is “forbidden”).
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Every formula defines a subset of ΣX ∗

Φ : X is an inductive set

Φ : ∀x (x ∈ X =⇒ s(x) ∈ X )

There is one free variable, X . Thus, we set

Σ = {0, 1}

A sequence over Σ defines a subset of X ∗ (its characteristic
function).

The set of sequences in ΣX∗ defined by Φ is the set of consisting
of the sequence of all 0s together with sequences with finite initial
sequence of 0s followed by an infinite tail of 1s. Thus the
appearance of the “pattern” 10 is “forbidden”.
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We can express a lot in S1S

Φ : x ≤ y

Φ : ∀X ( (X is inductive ∧ x ∈ X ) =⇒ y ∈ X )
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Recognizing subsets of ΣX ∗
by Büchi automata

Φ : X contains a nonempty inductive set

Φ : ∃Y ( ∃y(y ∈ Y ) ∧ Y is inductive ∧ X ⊆ Y )

The sequences defined by Φ are precisely those with a tail of 1s.
We can recognize the sequences defined by Φ by the following
Büchi automaton (in which © = 0 and � = 1)

�i1 0

��
0

��

0

��
I = {i1, i1}

�f 0cc

©i2

0

AA

0

EE

0

ZZ F = {f }

Start at i1 or i2, but make sure to visit f .
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Büchi automaton

Büchi automaton = finite graph S
- with vertices labeled by symbols in Σ,
- a set of initial states I , and
- a set of final states F .

�i1
0

��
0

��

0

��
I = {i1, i1}

�f 0cc

©i2

0

DD

0

EE

0

ZZ F = {f }

�
0 //© 0 //© 0 //�

0 //�
0 //�

0 //�
0 // . . .

A sequence over Σ is accepted (recognized) if there exists a graph
homomorphism from the sequence to the automaton such that
- the labels are preserved
- the root of the sequence goes to an initial state
- at least one of the final states is visited infinitely many times
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Büchi Theorem(s)

Theorem (Büchi 1962)

The S1S theory of the one successor structure X ∗ is decidable.

Theorem (Büchi 1962)

A set of sequences is definable in S1S if and only if it can be
recognized by a Büchi automaton.

Note that it is much easier to stare at an automaton and decide if
there exists a sequence that is accepted than to stare at the
formula and decide the same thing. In the automaton, we just
need to check if there is a path from an initial state to a cycle
containing a final state.

Zoran Šunić Hofstra University Group tree shifts II



Where do subshifts fit?

The inductive sets (their characteristic functions) form a subshift.
They are accepted by

© 0 //0 :: � 0cc

where both states are initial and both are final.

They can also be described as the sequences that do not contain
the pattern �© (the pattern 10)
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The golden shift

∀x ( x ∈ X =⇒ ¬(s(x) ∈ X ) )

These are sequences without consecutive 1s (forbidden pattern
��)

They are accepted by

©
0

��
0 :: �

0

``

where both states are initial and both are final.
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The even shift

{ g ∈ ΣX∗ | there are even number of 0s between any two 1s in g }

These are sequences that do not contain any pattern of the form
�©© . . .©©︸ ︷︷ ︸

2k+1

�

They are accepted by

©

0

��

�

0 ..

TT

0

0 ;;

©

0

EE

where all states are initial and all are final.

Thus, it can be defined in S1S! (Homework)
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Sofic shifts and shifts of finite type

defined by
frbddn ptrns

thm⇐⇒
Subshift

(closed and
shift-invariant set)

(

Sofic shift
def⇐⇒

a set
recognizable by a

Büchi autom.
no restrictions

(

defined by
finitely many
frbddn pttrns

def⇐⇒ Shift of
finite type

thm
=⇒

a set
recognizable by a

Büchi autom.
no restrictions
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Sofic shifts and shifts of finite type

defined by
frbddn ptrns

thm⇐⇒
Subshift

(closed and
shift-invariant set)

(

quotient of
a SFT

thm⇐⇒ Sofic shift
def⇐⇒

recognizable by a
Büchi autom.
no restrictions

(

defined by
finitely many
frbddn pttrns

def⇐⇒ Shift of
finite type

thm
=⇒

recognizable by a
Büchi autom.
no restrictions
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Sofic = Büchi rcgnzble ∩ shifts = S1S dfnble ∩ shifts

Büchi
recognizable

(

shifts

(
sofic
shifts

(

shifts
of finite type

The shift-invariance removes the need for initial states and the
topological closure property removes the need for final states.
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2 is more complicated than 1

We can repeat, mutatis mutandis, most of the story on the binary
tree (or any tree of higher (finite) arity). It is definitely more
complicated, but it is also the same.

And stared, as if doubting my meaning,
And said: For the sake of heaven explain

Heinrich Heine

Zoran Šunić Hofstra University Group tree shifts II



Tree patterns

Definition

An X -tree pattern of size s over Σ is a map in ΣX (s)
, where

X (s) =
⋃s−1

i=0 X i .

1 �
0

��

1

��

t2 �
0

��

1

��

a �
0

��

1

��

at2 �
0

��

1

��

� � � � � � � �

t �
0 1

t3 �
0 1

at �
0 1

at3 �
0 1

� � � � � � � �
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Two tree shifts of finite type

If we forbid the tree-patterns in the bottom row

G(B) = { g ∈ ΣX∗ | g(u0) = g(u1), for all u }

If we forbid the tree-patterns in the right half

G(R) = { g ∈ ΣX∗ | g(u0) + g(u1) = g(u), for all u }

that was no real paradise,
with a tree forbidden in it.

Heinrich Heine

Definition

An X -tree shift over Σ defined by finitely many forbidden patterns
is called a tree shift of finite type.
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Graphical (automaton) representation

G(B) = { g ∈ ΣX∗ | g |(u0) = g |(u1), for all u }

�
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1
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0

''
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��

�
1{{

0
dd

0

gg

1

__ �

AR

0 $$

1
;;

0

''

1

��

�
1{{

0
dd

0

gg

1

__

G(R) = { g ∈ ΣX∗ | g |(u0) + g |(u1) + g |(u) is even, for all u }
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Acceptance of a portrait
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Unrestrictive Rabin automaton (Rabin-Moore automaton)

An unrestrictive Rabin X -tree graph over Σ is a 5-tuple
A = (S ,X ,Σ, τ, λ), where

- S is a nonempty set, called the set of states (or vertices),

- X is a finite alphabet, called transition (or edge, or tree)
alphabet,

- Σ is a finite alphabet, called decoration (or labeling, or state,
or vertex) alphabet,

- τ ⊆ S × SX is a relation, called the transition relation, whose
elements are called transition bundles (or edge bundles), and

- λ : S → Σ is a decoration map (or labeling) map, assigning
label to each state.

An unrestrictive Rabin X -tree automaton over Σ is an unrestrictive
Rabin X -tree graph over Σ in which the set S of states is finite.
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Acceptance by unrestrictive Rabin automata

Let

g = (Sg ,X ,Σ, τg , λg ) and h = (Sh,X ,Σ, τh, λh)

be two unrestrictive X -tree Rabin graphs over Σ.
A homomorphism α : g → h is a map α : Sg → Sh on the vertices
that is compatible with the labeling and with the transition
functions, i.e., a map such that

- the labels on the vertices in g agrees with the labels of their
images in h. More precisely, for every vertex s in Sg ,

λg (s) = λh(α(s)),

and

- the edge bundles are preserved. More precisely, for all
s, s0, . . . , sk−1 in Sg ,

(s, s0, . . . , sk−1) ∈ τg =⇒ (α(s), α(s0), . . . , α(sk−1)) ∈ τh.
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Acceptance by unrestrictive Rabin automata

Let f : X ∗ → Σ be an X -tree over Σ. We can think of it as the
unrestrictive Rabin X -tree graph over Σ

f = (X ∗,X ,Σ, τX , f )

where
τX = {(w , (wx)x∈X ) | w ∈ X ∗}

Let g = (S ,X ,Σ, τ, λ) be an unrestrictive Rabin X -tree automaton
over Σ. The automaton g accepts f if there exists a
homomorphism α : f → g .
The language L(g) of g is the set of all X -trees f over Σ accepted
by g , i.e.,

L(g) = {f ∈ ΣX∗ | there exists a homomorphism α : f → g}.
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S2S

first order varaiables: x , y , z , . . . (range over vertices in X ∗)
second order varaibles: X ,Y ,Z , . . . (range over subsets of X ∗)
2 successors: s0 and s1 (s0(u) and s1(u) interpreted as the
successors of u in X ∗)
—————————————————————–
equality symbol: =
membership symbol: ∈
quantifiers: ∀,∃
logical connectives: ¬,∧,∨, =⇒
parentheses: ( and )
basic terms: x
terms: for every term t, the expressions s0(t) and s1(t) are terms.
atomic formulas: t1 = t2, X = Y , t ∈ X .
formulas: for all formulas Φ and Ψ the following are also formulas

(¬Φ), (Φ ∧Ψ), (Φ ∨Ψ), (Φ =⇒ Ψ),
(∃x Φ), (∃X Φ), (∀x Φ), (∀X Φ).
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Some simple formulas in S2S

Φ : z is the root

Φ : ∀x (z 6= s0(x) ∧ z 6= s1(x))

Ψ : X is a ray

Ψ : the root is in X∧
∀x (x ∈ X =⇒ (s0(x) ∈ X ∨ s1(x) ∈ X , but not both)∧
∀x∀y (x ∈ X ∧ (x = s0(y) ∨ x = s1(y)) =⇒ y ∈ X )∧
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Rabin Theorem(s)

Theorem (Rabin 1969)

The S2S theory of the two successor structure X ∗ is decidable.

Theorem (Rabin 1969)

A set of labeled trees is definable in S2S if and only if it can be
recognized by a Rabin automaton.
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Rabin Automaton?

Well, same as unrestricted Rabin automaton, but with restrictions!

O stop, or youll drive me quite crazy!
Heinrcih Heine

- A set I of initial states is given
- A family F of sets of states is given (final sets of states )
- Acceptance means: (1) start in an initial state and (2) for every
ray, the set of states visited infinitely many times by that ray is a
set in the family F ,
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Rabin Automaton?

Well, same as unrestricted Rabin automaton, but with restrictions!

O stop, or youll drive me quite crazy!
Heinrcih Heine

- A set I of initial states is given
- A family F of sets of states is given (final sets of states )
- Acceptance means: (1) start in an initial state and (2) for every
ray, the set of states visited infinitely many times by that ray is a
set in the family F ,

Zoran Šunić Hofstra University Group tree shifts II



Finitary automorphisms can be recognized by Rabin

Three states (and the compactness of the boundary of X ∗) suffice.

�
s

0,1
&&

0,1

))

0,1

((

� 0,1
xx

t
0,1

ii

0,1

vv
�

0,1

YY

f

I = {s, t, f }

F = {{f }}
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Sofic shifts and shifts of finite type (C-S,C,F,Š, 2013)

defined by
frbddn ptrns

thm⇐⇒
Subshift

(closed and
shift-invariant set)

(

quotient of
a SFT

thm⇐⇒ Sofic shift
def⇐⇒

recognizable by a
Rabin autom.
no restrictions

(

defined by
finitely many
frbddn pttrns

def⇐⇒ Shift of
finite type

thm
=⇒

recognizable by a
Rabin autom.
no restrictions
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Sofic = Rabin rcgnzble ∩ shifts = S2S dfnble ∩ shifts

C-S,C,F,Š, 2013

Rabin
recognizable

(

tree
shifts

(
sofic
tree

shifts
(

tree shifts
of finite type

The shift-invariance (self-similarity) removes the need for initial
states and the topological closure property removes the need for
final states.
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Recall that there was a group structure!

’Tis now full time that my folly I drop,
And return to sober reason;

This comedy now ’twere better to stop
That weve played for so long a season.

Heinrich Heine
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A simple (?) observation

Proposition

Every group tree shift of finite type (in fact, every sofic group tree
shift) is a closure of a group of finite-state automorphisms.
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A characterization of group tree shifts of finite type

Theorem (Grigorchuk 2006 (i) implies (ii), Š. 2007 converse)

Let G be a subgroup of Aut(X ∗). The following are equivalent.
(i) G is defined by forbidden tree patterns of size s
(ii) G is the closure of a regular branch group H, branching over
its stabilizer Hs−1 of level s − 1.
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Three examples

Example

The first Grigorchuk group (1980) branches over its stabilizer of
level 3, so its closure is a group tree shift of finite type defined by
patterns of size 4
(total of 212 = 4096 allowed patterns; thus 215 − 212 forbidden).

Example

The Gupta-Sidki 3-group (1983) branches over its stabilizer of level
2, so its closure is a group tree shift of finite type defined by
patterns of size 3
(total of 38 = 6561 allowed patterns; thus 313 − 38 forbidden).

Example

The closure of the Hanoi Towers group (3 pegs) is a group tree
shift of finite type defined by patterns of size 2 (even product)
(total of 3 · 63 allowed patterns; thus 64 − 3 · 63 forbidden).
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from ”Knave of Bergen”

The trumpets crash, and the merry hum
Of the double-bass increases,

Until the dance to an end has come,
And then the music ceases.

Heinrich Heine
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