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Statue of Lorelei on the occasion of Heine’s 100th ...
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Moore automaton (defines finite self-similar sets)

a finite graph S with
- vertices labeled by permutations in Σ and,
- for each state s ∈ S , one outgoing bundle of edges which are
labeled bijectively by X .
- a portrait is accepted if there is a vertex and edge label
preserving homomorphism from the portrait to the automaton
(exactly one portrait per state is accepted/recognized/defined)
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Moore automaton (defines finite self-similar sets)
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Rabin-Moore automaton (defines closed self-similar sets)

a finite graph S with
- vertices labeled by permutations in Σ and,
- for each state s ∈ S , several outgoing bundles of edges, with the
edges in each bundle labeled bijectively by X .
- a portrait is accepted if there is a vertex and edge label
preserving and bundle preserving homomorphism from the portrait
to the automaton
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Rabin-Moore automaton (defines closed self-similar sets)
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What exactly is the set (group) recognized?

GB = { g ∈ ΣX∗ | (∀u ∈ X ∗)g |(u0) = g |(u1) }

(Group) tree shift of finite type, defined by forbidden tree-patterns
of size 2 (the patterns in the bottom row are forbidden).
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Rabin automaton (S2S definable sets)

a finite graph S with
- vertices labeled by permutations in Σ and,
- for each state s ∈ S , several outgoing bundles of edges, with the
edges in each bundle labeled bijectively by X .
- set of initial states I
- family F of sets of states (final sets of states)
- a portrait is accepted if (1) there is a vertex and edge label
preserving and bundle preserving homomorphism from the portrait
to the automaton and (2) for each ray, the set of states visited by
the ray under the accepting homomorphism is a member of F
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Rabin automaton (S2S definable sets)
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S2S: Monadic second order theory of the two successors
structure X ∗

first order varaiables: x , y , z , . . . (range over vertices in X ∗)
second order varaibles: X ,Y ,Z , . . . (range over subsets of X ∗)
2 successors: s0 and s1 (s0(u) and s1(u) interpreted as the
successors of u in X ∗)
—————————————————————–
equality symbol and membership symbol: =, ∈
quantifiers: ∀,∃
logical connectives: ¬,∧,∨, =⇒
parentheses: ( and )
basic terms: x
terms: for every term t, the expressions s0(t) and s1(t) are terms.
atomic formulas: t1 = t2, X = Y , t ∈ X .
formulas: for all formulas Φ and Ψ the following are also formulas

(¬Φ), (Φ ∧Ψ), (Φ ∨Ψ), (Φ =⇒ Ψ),
(∃x Φ), (∃X Φ), (∀x Φ), (∀X Φ).
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Rabin Theorem(s)

Theorem (Rabin 1969)

The S2S theory of the two successor structure X ∗ is decidable.

Theorem (Rabin 1969)

A set of labeled trees is definable in S2S if and only if it can be
recognized by a Rabin automaton.

Still one of the strongest decidability results in logic (used to prove
decidability of many other theories by embedding them in S2S)
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Sofic shifts and shifts of finite type (C-S,C,F,Š, 2013)

defined by
frbddn ptrns

thm⇐⇒
Subshift

(closed and
shift-invariant set)

(

quotient of
a SFT

thm⇐⇒ Sofic shift
def⇐⇒

recognizable by a
Rabin autom.
no restrictions
(Rabin-Moore)

(

defined by
finitely many
frbddn pttrns

def⇐⇒ Shift of
finite type

thm
=⇒

recognizable by a
Rabin autom.
no restrictions
(Rabin-Moore)
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Sofic = Rabin rcgnzble ∩ shifts = S2S dfnble ∩ shifts

Ceccherini-Silberstein, Coornaert, Fiorenzi, Š, 2013

Rabin
recognizable

(

tree
shifts

(
sofic
tree

shifts
(

tree shifts
of finite type

The shift-invariance (self-similarity) removes the need for initial
states and the topological closure property removes the need for
final states.
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A simple observation

Proposition

Every group tree shift of finite type (in fact, every sofic group tree
shift) is a closure of a group of finite-state automorphisms.

Proof.

Let G be a sofic group tree shift accepted by the Rabin-Moore
automaton A. For each state of A fix an outgoing bundle (thus,
select a Moore automaton A′ inside the Rabin-Moore automaton
A). Any g ∈ G can be approximated up to a given level by a
finite-state automorphism g ′ in G that “imitates” g in A up to
that level and follows A′ below that level.
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A characterization of group tree shifts of finite type

Theorem (Grigorchuk 2006 (i) implies (ii), Š. 2007 converse)

Let G be a subgroup of Aut(X ∗). The following are equivalent.
(i) G is defined by forbidden tree patterns of size s
(ii) G is the closure of a regular branch group H, branching over
its stabilizer Hs−1 of level s − 1.

- (⊆) This is always true in a self-similar group.
If h stabilizes s levels then its sections h0, h1, . . . , hk−1 must
stabilize s − 1 levels.

- (⊇) If h0, h1, . . . , hk−1 stabilize s − 1 levels then
h = (h0, h1, . . . , hk−1) stabilizes s levels.

Yes, but is it in H?

Zoran Šunić Hofstra University Group tree shifts III



A characterization of group tree shifts of finite type

Theorem (Grigorchuk 2006 (i) implies (ii), Š. 2007 converse)
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A characterization of group tree shifts of finite type
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Let G be a subgroup of Aut(X ∗). The following are equivalent.
(i) G is defined by forbidden tree patterns of size s
(ii) G is the closure of a regular branch group H, branching over
its stabilizer Hs−1 of level s − 1.

- (⊆) This is always true in a self-similar group.
If h stabilizes s levels then its sections h0, h1, . . . , hk−1 must
stabilize s − 1 levels.

- (⊇) If h0, h1, . . . , hk−1 stabilize s − 1 levels then
h = (h0, h1, . . . , hk−1) stabilizes s levels.

Yes, but is it in H?
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Group H branching over the stabilizer of level s − 1

Hs = Hs−1 × Hs−1 × · · · × Hs−1

h

vv �� **

�� ��
h|0 �� ��

h|1

. . .

�� ��
h|k−1

. . .
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Group H branching over the stabilizer of level s − 1

Hs = Hs−1 × Hs−1 × · · · × Hs−1

Thus, the real question is:
given h in Hs−1, is the following automorphism in H (for every
position on the first level, of course)?

uu �� **

�� ��id �� ��h

. . .

�� ��id
. . .
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Self-similar vs. self-replicating vs. branching over Hs−1

self-similar = every section is an element

= anything can be brought from the anywhere to the root

= (∀h ∈ H)(∀u ∈ X ∗) h|u ∈ H

self-replicating = every element is a (special) section

= anything can be taken from the root to anywhere

= (∀h ∈ H)(∀u ∈ X ∗)(∃g ∈ StabH(u)) g |u = h

branch overHs−1 = every element in Hs−1 is a (very special) section

= anything in Hs−1 can be taken from the root to anywhere

= (∀h ∈ H)(∀u ∈ X ∗)(∃g ∈ RistH(u)) g |u = h
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Two examples

Example

The first Grigorchuk group (1980) branches over its stabilizer of
level 3, so its closure is a group tree shift of finite type defined by
patterns of size 4
(total of 212 = 4096 allowed patterns; thus 215 − 212 forbidden).

Example

The Gupta-Sidki 3-group (1983) branches over its stabilizer of level
2, so its closure is a group tree shift of finite type defined by
patterns of size 3
(total of 38 = 6561 allowed patterns; thus 313 − 38 forbidden).
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Third example

Theorem (Grigorchuk 2006 (i) implies (ii), Š. 2007 converse)

Let G be a subgroup of Aut(X ∗). The following are equivalent.
(i) G is defined by forbidden tree patterns of size s
(ii) G is the closure of a regular branch group H, branching over
its stabilizer Hs−1 of level s − 1.

Example (Warning)

The closure H of the Hanoi Towers group H (on 3 pegs) is a
finitely constrained grup defined by ptterns of size 2, even though
H does not branch over a level stabilizer.

The point is that the closure itself does branch over a level
stabilizer.
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Is sofic actually different from finite type?

I do not know any examples of a sofic group tree shift that is not
group tree shift of finite type.

Theorem (Penland, Š 2018)

Let G be a sofic group tree shift such that its normalizer in
Aut(X ∗) contains a level transitive self-replicating subgroup. Then
G is a group tree shift of finite type.
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Sofic = Rabin rcgnzble ∩ shifts = S2S dfnble ∩ shifts

Rabin
recognizable

groups

(

group
tree shifts

(
sofic

group tree shifts

⊆((?)

group tree shifts
of finite type
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Z2 is not S2S definable

Corollary (Penland, Š 2018)

Let G be a level transitive, self-replicating group that satisfies a
group identity (or has a nontrivial center or ...). Then, the closure
G is a group tree shift that is not Rabin recognizable (and, in
particular, it is not sofic or of finite type).

Proof.

If G were Rabin recognizable, it would be sofic, but then it would
be of finite type, but then it would be branch, but then it could
not satisfy an identity (note that G satisfies all identities that G
does), a contradiction.
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Adding machine

That foul machine! and God forbid
That I should ever use it!

Heinrich Heine
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Tree patterns (of size 2)
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Two groups defined by patterns
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These patterns define the “same children” group

Gsc = { g ∈ ΣX∗ | g(u0) = g(u1), for all u }
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These patterns define the “even pattern” group

Geven = { g ∈ ΣX∗ | g(u0) + g(u1) + g(u) = 0, for all u }
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Finitely constrained groups

Definition

A group of tree automorphism defined by a finite set of forbidden
patterns is called a finitely constrained group (group tree shift of
finite type)
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The patterns for the Grigorchuk group have 3 constraints

Grigorchuk 2000 (indirectly)

Arzhantseva-ZŠ 2007 (3 explicitly stated constraints)

Bartholdi around 2007 (explicitly stated “single” constraint)

“degrees of freedom” = 5 out of 8.

Zoran Šunić Hofstra University Group tree shifts III



Entropy of f.c.g. with respect to balls on the tree

lim
n→∞

log2(# of patterns of size n appearing in G )

log2(# of all possible patterns of size n)
=

(1 + 2 + · · ·+ 2n−1)− 3(1 + 2 + · · ·+ 2n−4)

1 + 2 + · · ·+ 2n−1
=

1− 3

8
=

5

8

entB(G ) = lim
n→∞

log2(# of patterns on the ball of radius n − 1)

size of the ball of radius n − 1
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Hausdorff dimension of closed subgroups of Aut(X ∗)

Theorem (Abercrombie 1994, Barnea-Shalev 1997)

dimH H = lim
n→∞

log[G : Gn]

log[Aut : Autn]

Two portraits are “close” when they agree on “many” levels:

d(g , h) = inf{ 1

[Aut : Autn]
| (∀m ≤ n)(∀u ∈ Xm) g |(u) = h|(u) }

Thus, for finitely constrained groups on the binary tree

entB(G ) = dimH(G ).

(For other trees we have entB(G ) = dimH(G ) log2 |Σ|.)

Zoran Šunić Hofstra University Group tree shifts III



From now on – binary trees
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Look mom – no limits (Š, Bartholdi,
Bondarenko-Samoilovych, ...)

For a finitely constrained group defined by patterns of size s, for
some s ≥ 1,

dimH(G ) ∈
{

1, 1− 1

2s−1
, 1− 2

2s−1
, 1− 3

2s−1
, . . . ,

1

2s−1
, 0

}

dimH(G ) =
log2 |Ps−1|

2s−1

where P is the essential finite group of patterns of size s defining
G .

essential group of patterns = the group of allowed patterns that
actually appear in some element
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So far (RG 2005)

1 1− 1
2s−1 1− 2

2s−1 1− 3
2s−1

s = 1 Aut(X ∗) 0 trivial X XXXXX X XXXXX
s = 2 Aut(X ∗) 1

2 0 finite X XXXXX
s = 3 Aut(X ∗) 3

4
2
4

1
4

s = 4 Aut(X ∗) 7
8

6
8

5
8 RG “2005”

s = 5 Aut(X ∗) 15
16

14
16

13
16

s = 6 Aut(X ∗) 31
32

30
32

29
32

...
...

...
...

...
...

...
...

s Aut(X ∗)

Is there a top.fin.gen. finitely constrained group of a given dimension
defined by patterns of a given size?

BLUE = YES
RED = NO
BLACK = the question is trivial
XXXXX = question makes no sense (negative dimension)
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Iterated monodromy groups of the tent map

Theorem (ZŠ 2007)

For every s ≥ 4, there are at least 2s−2 topologically finitely
generated, finitely constrained groups defined by patterns of size s
(but not by patterns of smaller size) whose Hausdorff dimension is

1− 3

2s−1

The groups above are “parametrized” by polynomials over GF(2).
The two groups corresponding to size 4 are the Grigorchuk group is
Gx2+x+1 and Grigorchuk-Erschler group is Gx2+1.

Theorem (Nekrashevych-ZŠ)

The groups above together with the dihedral group correspond to
the iterated monodromy groups of the self-cover of the unit
interval by the tent map.
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So far (ZŠ 2007)

1 1− 1
2s−1 1− 2

2s−1 1− 3
2s−1

s = 1 Aut(X ∗) 0 trivial X XXXXX X XXXXX
s = 2 Aut(X ∗) 1

2 0 finite X XXXXX
s = 3 Aut(X ∗) 3

4
2
4

1
4

s = 4 Aut(X ∗) 7
8

6
8

5
8 RG 2005

s = 5 Aut(X ∗) 15
16

14
16

13
16 ZŠ 2007

s = 6 Aut(X ∗) 31
32

30
32

29
32 ZŠ 2007

...
...

...
...

...
...

...
...

s Aut(X ∗) ZŠ 2007

Is there a top.fin.gen. finitely constrained group of a given dimension
defined by patterns of a given size?

BLUE = YES
RED = NO
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The two f.c groups defined by patterns of size 2

dimH(even tree shift group) = dimH(same children group) =
1

2

Both are defined by a single constraint and have maximal
Hausdorff dimension for the given size.

Theorem (ZŠ 2011)

Neither of these two groups is topologically finitely generated.
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So far (ZŠ 2011)

1 1− 1
2s−1 1− 2

2s−1 1− 3
2s−1

s = 1 Aut(X ∗) 0 trivial X XXXXX X XXXXX

s = 2 Aut(X ∗) 1
2 ZŠ 2011 0 finite X XXXXX

s = 3 Aut(X ∗) 3
4

2
4

1
4

s = 4 Aut(X ∗) 7
8

6
8

5
8 RG “2005”

s = 5 Aut(X ∗) 15
16

14
16

13
16 ZŠ 2007

s = 6 Aut(X ∗) 31
32

30
32

29
32 ZŠ 2007

...
...

...
...

...
...

...
...

s Aut(X ∗) ZŠ 2007

Is there a top.fin.gen. finitely constrained group of a given dimension
defined by patterns of a given size?

BLUE = YES
RED = NO
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F.c. groups defined by patterns of size 3 and size 4

Theorem (Bondarenko-Samoilovych 2013)

No finitely constrained group defined by a pattern group P of
pattern size 3 is topologically finitely generated.

Theorem (Bondarenko-Samoilovych 2013)

No finitely constrained group defined by a pattern group P of
pattern size 4 and Hausdorff dimension different from 5/8 is
topologically finitely generated.
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So far (IB-IS 2013)

1 1− 1
2s−1 1− 2

2s−1 1− 3
2s−1

s = 1 Aut(X ∗) 0 trivial X XXXXX X XXXXX

s = 2 Aut(X ∗) 1
2 ZŠ 2011 0 finite X XXXXX

s = 3 Aut(X ∗) 3
4 IB-IS 2013 2

4 IB-IS 2013 1
4 IB-IS 2013

s = 4 Aut(X ∗) 7
8 IB-IS 2013 6

8 IB-IS 2013 5
8 RG “2005”

s = 5 Aut(X ∗) 15
16

14
16

13
16 ZŠ 2007

s = 6 Aut(X ∗) 31
32

30
32

29
32 ZŠ 2007

...
...

...
...

...
...

...
...

s Aut(X ∗) ZŠ 2007

Is there a top.fin.gen. finitely constrained group of a given dimension
defined by patterns of a given size?

BLUE = YES
RED = NO
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A sufficient condition

Theorem (Bondarenko-Samoilovych 2013)

If G is a finitely constrained group defined by a pattern group P of
pattern size s and [P,P] does not contain StabP(s − 1) then G is
not topologically finitely generated.

In particular, abelian pattern groups lead to groups that are not
topologically finitely generated.
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F.c. groups of maximal Hausdorff dimension

Theorem (Penland-ZŠ 2015)

If G is a finitely constrained group defined by a pattern group P of
pattern size s, for some s ≥ 2, and G has maximal Hausodrff
dimension (equal to 1− 1

2s−1 ), then

(a) P is a maximal subgroup of Aut(X [s]) = C2 o C2 o · · · o C2︸ ︷︷ ︸
s

that

does not contain the “last generator” and
(b) G is not topologically finitely generated.
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So far (AP-ZŠ 2015)

1 1− 1
2s−1 1− 2

2s−1 1− 3
2s−1

s = 1 Aut(X ∗) 0 trivial X XXXXX X XXXXX

s = 2 Aut(X ∗) 1
2 ZŠ 2011 0 finite X XXXXX

s = 3 Aut(X ∗) 3
4 IB-IS 2013 2

4 IB-IS 2013 1
4 IB-IS 2013

s = 4 Aut(X ∗) 7
8 IB-IS 2013 6

8 IB-IS 2013 5
8 RG “2005”

s = 5 Aut(X ∗) 15
16 AP-ZŠ 2015 14

16
13
16 ZŠ 2007

s = 6 Aut(X ∗) 31
32 AP-ZŠ 2015 30

32
29
32 ZŠ 2007

...
...

...
...

...
...

...
...

s Aut(X ∗) AP-ZŠ 2015 ZŠ 2007

Is there a top.fin.gen. finitely constrained group of a given dimension
defined by patterns of a given size?

BLUE = YES
RED = NO
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Groups of second maximal dimension

It follows from the work of Bartholdi-Nekrashevych, Pink,
(Penland-Š) that

Proposition

The iterated monodromy groups of post-critically finite quadratic
polynomials yield finitely constrained, topologically finitely
generated groups defined by patterns of size s and dimension
1− 2/2s−1, for s ≥ 5.
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So far (B-N,P 2015)

1 1− 1
2s−1 1− 2

2s−1 1− 3
2s−1

s = 1 Aut(X ∗) 0 trivial X XXXXX X XXXXX

s = 2 Aut(X ∗) 1
2 ZŠ 2011 0 finite X XXXXX

s = 3 Aut(X ∗) 3
4 IB-IS 2013 2

4 IB-IS 2013 1
4 IB-IS 2013

s = 4 Aut(X ∗) 7
8 IB-IS 2013 6

8 IB-IS 2013 5
8 RG “2005”

s = 5 Aut(X ∗) 15
16 AP-ZŠ 2015 14

16 B-N,P 2015 13
16 ZŠ 2007

s = 6 Aut(X ∗) 31
32 AP-ZŠ 2015 30

32 B-N,P 2015 29
32 ZŠ 2007

...
...

...
...

...
...

...
...

s Aut(X ∗) AP-ZŠ 2015 B-N,P 2015 ZŠ 2007

Is there a top.fin.gen. finitely constrained group of a given dimension
defined by patterns of a given size?

BLUE = YES
RED = NO
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adapted from ”The robbers”

Thus speak I, but now, my friends, farewell,
I must end my long discourses;

My father-in-law’s postilion’s outside,
Awaiting me with the horses.

Heinrich Heine
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