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lhara’s theorem

lhara's theorem

the classical theorem of lhara

@ Let K be a non-archimedian local field, i.e., K is a field with a
discrete valuation v: K — Z U {oo} and O C K, where
O={xeK\v(x) <0}, is a complete discrete valuation ring with
finite residue field F.

@ Let V be a 2-dimensional K-vector space.

@ A O-submodule L C V is said to be a O-lattice, and

o two O-lattices Ly, L, C V are said to be equivalent, if there exists
A € K* such that L, = A - Ly, and adjacent if L;/L; N L, ~TF.

@ Let ¥ denote the set of equivalence classes of O-lattices, and let
€ ={([L1],[L2]) € ¥?| L1, L, adjacent }.

@ Then I'(V) = (¥, &) with the obvious mappings 0: £ — ¥/,

t: £ — V¥, . & — & is a combinatorial graph.

@ (Y. Ihara) The graph I'(V) is a tree.




lhara’s theorem

Consequences of |hara's theorem

using Bass-Serre Theory

Let ([L1],[L2]) be an edge in the graph (V).
Let G = SLy(K), G; = stabg([L;]) and | = stabg, ([L2]). Then

G~ G1 H/ G2.

The group [ is called an lwahori subgroup of G.
(Stallings) Every torsion free lattice A C SLy(K) is a free group.

As a consequence every lattice A C SL,(K) is a virtually free group.




lhara’s theorem

The graph

associated to a pair of subgroups

o Let G be a group, and let A, B C G be subgroups of G. Then
o I'(G; A, B)=(V,&) given by
e ¥=G/AUG/B,
o £={(gA, gB) | g € G} with the obvious mappings t,0: £ = ¥,
~: & — &, is a graph in the sense of J-P. Serre.

Proposition (Trees, J-P. Serre)

Let G be a group, and let A, B C G be two proper non-trivial subgroups
of G. Then the following are equivalent:

o [(G;A,B) is a tree.

e The canonical homomorphism 7: Al B — G is an isomorphism,
where C = AN B.




Coxeter groups
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Coxeter groups

A group W together with a subset S C W satisfying
e Yo €S :ord(o) =2
@ Foro,7 €S let

My = ord(o - 7) € Z>o U {o0}.

Then

W~ (S|(c- 7)™ =1).

is called a Coxeter system. Groups with a Coxeter system are called
Coxeter groups
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Decomposing Coxeter groups

Let (W, S) be a Coxeter system, and let S5, Sy C S be subsets of S.
Then Sy, is said to be an oo-decomposition of (W, S), if

("] SAUSVZS,
@ For S = Sy NS, and Sy = Sy \ Se; Sy = Sa \ Se one has :

Mg =00 VYo €Sy, T € Sh.
@ The oo-decomposition Sy, is said to be spherical, if (W, S,) is a

finite Coxeter group, where W, = Ws, = (S,) is the parabolic
subgroup generated by S,.
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Decomposing Coxeter groups, |l

Let (W,S) be a Coxeter system, let Sy;, C S be proper subsets of S,
and let S¢ = Sy N S4. Then the following are equivalent:

o W~ W], Wy, where Wy = Ws, = (Sy), etc.
o I'(W; Wy, W,) is a tree.

e Wy, is an oco-decomposition.
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Coxeter groups with more than one end

MathOverfiow is a question and answer site Here's how it works:
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“The folowing book has a wealth of material on this topic:
The geometry and topology of Coxetr groups by Michasl Davis.
By way of example, here is one result rom the book:
‘Theorem 8.7.1 Let (W, 5) be a Coxster System:

1. W is one-ended if and only H!(Z) = 0.
2. W has two ends if and only H)(S) = Z.
3. W has infinitely many ends f and only f H () has infinte rank.

Here X s the cell complex assodiated to (I, 5). | have an e-copy of the book - email me ifyou
want a copy.
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Decomposing Coxeter groups, Ill

Proposition (M. Davis)

Let (W,S) be a Coxeter system. Then e(W) > 1 if and only if there
exists a spherical co-decomposition Sy, of (W, S). In particular, Y.
Cornulier’s question has an affirmative answer.

Definition
A Coxeter system (W, S) is said to be completely spherically
oo-decomposable, if there exists a family of subsets (S;); € J such that

e S= UjeJ S
o (Ws,,S;) is a finite Coxeter group for all j € J;

o for j,k € J, j # k, Sj, Sk is a spherical co-decomposition of
(Wsjusk, Sj U Sk)
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Coxeter groups of dimension 1

Proposition

Let (W, S) be a Coxeter system. Then the following are equivalent:
o ved(W) <1;
e cdg(Q) <1
e (W,S) is completely spherically co-decomposable.




Decomposing Coxeter groups
o

Reduced expressions
and the length function ...
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Buildings

Definition
A building is a simplicial complex % which is the union of a family of
simplicial subcomplexes o7 which elements are called appartments with
the following properties:
B1 Every appartment ¥ € 7 is a Coxeter complex;
B, For any two simplices A, B € Z there is an appartment ¥ containing
both of them;
B3 For any two appartments ¥, ¥’ € &/ containing A and B there is an
isomorphism ¥ — Y’ fixing A and B pointwise.

<

In the above definition "empty sets” are allowed.
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Buildings, Il

Remark

All appartments are isomorphic to a Coxeter complex of a fixed Coxeter
group (W, S). Moreover, the type function |_|: C(W,S) — P*(S) can
be extended to a type function

|: 2 = P¥(S) (1)

(P* = proper subsets.)
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Decompositions and Graphs

o Let Sy, C S be a decomposition of the Coxeter system (W, S), i.e.,
S =5,USy, and put S, = S5, N Sy.

o Let A, denote all elements in A of co-type S,.

e For B € A, let BY denote the face of B of cotype Sy, and similar
B* the face of B of cotype S,.

o Let 'y, denote the graph (in the sense of J-P. Serre) given by

V = %v U%‘,
E=Bo B,
O|gg Zf', t|33 =_A.

Then Iy/, is a combinatorial graph. Moreover one has the following
version of lhara’s theorem.

Let Sy;, be a decomposition of the Coxeter system (W, S) associated to
the building %. Then the following are equivalent:

® Sy is an oco-decomposition of (W, S);

© [y, is a tree.




Buildings
o

Topological Kac-Moody groups

of Rémy-Ronan type . ..

o Let IF be a finite field, and let G(F) denote the F-rational points of
an almost split Kac-Moody group defined over F with infinite Weyl
group (W, S).

@ Let = denote the twin building associated to G(FF), and =" the
positive part of =.

o Let G(TF) denote the completion of G(FF) with respect to its discrete
action of the locally finite simplicial complex |=*|, where [=*] is the
Davis-realization of =+. Then G(F) is a totally disconnected locally
compact group, and the same is true for the set of type-preserving
elements G°(F)

o If Sy, is an co-decomposition of (W, S), then - by Bass-Serre
theory - _ _ _

Go(F) = GZ(F) L go ey G (F):

o If W is of virtual cohomological dimension 1, then G°(F) is
isomorphic to the fundamental group of a finite graph of " profinte
groups” which edge maps are open embeddings.




The proof

or why is it true!!

@ The principal idea of the proof the generalized lhara theorem is to
define maps between the set of minimal galleries mgal™ (%) with
signature of the building % and the set P,(I'y/,) of reduced paths in
the graph Ny, and to study their properties in order to be able to
show surjectivity (by induction).
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