Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
		0000000		

An Ihara-type theorem for buildings

Thomas Weigel

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Matematica e Applicazioni

Trees, dynamics and locally compact groups, Düsseldorf, Germany, 29.6.2018

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		0000000	000	
Ihara's theor the classical theorem	em of Ihara			

- Let \mathbb{K} be a non-archimedian local field, i.e., \mathbb{K} is a field with a discrete valuation $v \colon \mathbb{K} \to \mathbb{Z} \cup \{\infty\}$ and $\mathcal{O} \subseteq \mathbb{K}$, where $\mathcal{O} = \{x \in \mathbb{K} \setminus v(x) \leq 0\}$, is a complete discrete valuation ring with finite residue field \mathbb{F} .
- Let V be a 2-dimensional \mathbb{K} -vector space.
- A \mathcal{O} -submodule $L \subseteq V$ is said to be a \mathcal{O} -lattice, and
- two \mathcal{O} -lattices $L_1, L_2 \subseteq V$ are said to be **equivalent**, if there exists $\lambda \in \mathbb{K}^{\times}$ such that $L_2 = \lambda \cdot L_1$, and **adjacent** if $L_1/L_1 \cap L_2 \simeq \mathbb{F}$.
- Let \mathscr{V} denote the set of equivalence classes of \mathcal{O} -lattices, and let $\mathcal{E} = \{ ([L_1], [L_2]) \in \mathscr{V}^2 \mid L_1, L_2 \text{ adjacent } \}.$
- Then Γ(V) = (𝒴,𝔅) with the obvious mappings o: 𝔅 → 𝒴,
 t: 𝔅 → 𝒴, ¬: 𝔅 → 𝔅 is a combinatorial graph.
- (Y. Ihara) The graph $\Gamma(V)$ is a tree.

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		000000	000	
Conseque	nces of Ihara	's theorem		

- Let $([L_1], [L_2])$ be an edge in the graph $\Gamma(V)$.
- Let $G = \operatorname{SL}_2(\mathbb{K})$, $G_i = \operatorname{stab}_G([L_i])$ and $I = \operatorname{stab}_{G_1}([L_2])$. Then

 $G\simeq G_1\amalg_I G_2.$

The group I is called an Iwahori subgroup of G.

- (Stallings) Every torsion free lattice $\Lambda \subseteq SL_2(\mathbb{K})$ is a free group.
- As a consequence every lattice $\Lambda \subseteq {\rm SL}_2(\mathbb{K})$ is a virtually free group.

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000				
The graph associated to a pair	of subgroups			

- Let G be a group, and let $A, B \subseteq G$ be subgroups of G. Then
 - $\Gamma(G; A, B) = (\mathscr{V}, \mathscr{E})$ given by

•
$$\mathscr{V} = G/A \sqcup G/B$$
,

• $\mathcal{E} = \{ (gA, gB) \mid g \in G \}$ with the obvious mappings $t, o: \mathcal{E} \to \mathcal{V}$, $\overline{}: \mathcal{E} \to \mathcal{E}$, is a graph in the sense of J-P. Serre.

Proposition (Trees, J-P. Serre)

Let G be a group, and let $A, B \subseteq G$ be two proper non-trivial subgroups of G. Then the following are equivalent:

- Γ(G; A, B) is a tree.
- The canonical homomorphism $\pi: A \coprod_C B \to G$ is an isomorphism, where $C = A \cap B$.

lhara's theorem 000	Coxeter groups	Decomposing Coxeter groups	Buildings 000	
Coxeter grou	ups			

Definition

A group W together with a subset $S \subset W$ satisfying

•
$$\forall \sigma \in S : \operatorname{ord}(\sigma) = 2;$$

• For
$$\sigma, \tau \in S$$
 let

$$m_{\sigma,\tau} = \operatorname{ord}(\sigma \cdot \tau) \in \mathbb{Z}_{\geq 0} \cup \{\infty\}.$$

Then

$$W \simeq \langle S \mid (\sigma \cdot \tau)^{m_{\sigma,\tau}} = 1 \rangle.$$

is called a **Coxeter system**. Groups with a Coxeter system are called **Coxeter groups**

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		000000	000	
Decompo	sing Coxeter	groups		

Definition

Let (W, S) be a Coxeter system, and let S_{\blacktriangle} , $S_{\blacktriangledown} \subseteq S$ be subsets of S. Then $S_{\blacktriangledown/\blacktriangle}$ is said to be an ∞ -decomposition of (W, S), if

- $S_{\blacktriangle} \cup S_{\blacktriangledown} = S;$
- For $S_{\bullet} = S_{\blacktriangledown} \cap S_{\blacktriangle}$ and $S_{\triangledown} = S_{\blacktriangledown} \setminus S_{\bullet}$; $S_{\bigtriangleup} = S_{\blacktriangle} \setminus S_{\bullet}$ one has :

$$m_{\sigma, au} = \infty \quad \forall \sigma \in S_{\nabla}, \ au \in S_{\Delta},$$

The ∞-decomposition S_{V/A} is said to be spherical, if (W_•, S_•) is a finite Coxeter group, where W_• = W_{S•} = ⟨S_•⟩ is the parabolic subgroup generated by S_•.

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		000000	000	
Decompo	sing Coxeter	groups II		

Proposition

Let (W, S) be a Coxeter system, let $S_{\vee/A} \subseteq S$ be proper subsets of S, and let $S_{\bullet} = S_{\vee} \cap S_{A}$. Then the following are equivalent:

- $W \simeq W_{\blacktriangle} \coprod_{W_{\bullet}} W_{\blacktriangledown}$, where $W_{\blacktriangledown} = W_{S_{\blacktriangledown}} = \langle S_{\blacktriangledown} \rangle$, etc.
- Γ(W; W_▼, W_▲) is a tree.
- $W_{\mathbf{V}/\mathbf{A}}$ is an ∞ -decomposition.

Ihara's theorem	O	er groups	OC€00	ong Coxeter group	0S	Buildings 000		he Proof
Coxeter	groups	with mo	ore tha	n one e	end			
	* G &			sign up log in tour help *				
MathOverflow for profession free, no regist Sign up	is a question and answer site al mathematicians. It's 100% ration required.	Here's how it works:	Anybody can The t	est answers are voted and rise to the top				
Ends of Cox	eter Groups							
It is known after S Coxeter group?	itallings that a group can have 0, 1, 2	or infinitely many ends. Are there kno	wn results on the space of ends	of a	-			
gr.group-theory gr	.geometric-topology							
echied Sep 10 '14 at Stefan Kohl 9,403 • 5 •	19:05 40 • 89	asked Sep 10 '14 at 14: Nicolas Boarge 263 • 1 • 8	46 8					
1 You can find some sciencedirect.com	a information on ends of Coxeter groups in this science/article/pi/0022404955001174 - Nick	a paper by Mihalik: Gill Sep 10 114 at 15:29						
5 I think the theorem Hopf - Seirice Se	n stating that a finitely generated group can or p 10.114 at 15.38	ly have 0, 1, 2 or infinitely many ends is rather o	due to					
1 Answer								
The following boo	k has a wealth of material on this top	ic:	_					
The geometry a	nd topology of Caxeter groups by Mic	chael Davis.						
By way of exampl	e, here is one result from the book:							
1. W is one-e	Let (W, S) be a Coxeter System: inded if and only $H^{1}_{*}(\Sigma) = 0$.							
2. W has two	ends if and only $H^1_c(\Sigma) \cong \mathbb{Z}$.							
3. W has infin	itely many ends if and only if $H^1_c(\Sigma)$	has infinite rank.						
want a copy.	complex associated to (W,S). Thav	e an e-copy of the book - emailine if y						
arowared Sep 10 '1- Nick Gill 7,085 + 17	41 17:22							
 I would not conside full answer one da when the Cooster case, the case of 	her this as a satisfactory answer, since it chang scribing in terms of the combinatorial data del group is finite involves a quite lengthy list. De the infinite dihedral group. () – YCor Sep 10	ges a problem into another one. I would conside fining the Coxeter group. For instance just descrearing when It has 2 ends is just, in the conner 14 at 17:42.	r as a bing ded					CORTINUES.
Here are 1 source such that all edge something checks to wonder if they	of multi-ended Coxeter group: when there is a s between A and B are labeled oo, and such 1 ble. Maybe there are other obvious sources o ms the only ones. — YCor Sep 10.114 at 17.45	a partition $S = A \cup C \cup B$ with A, B non-empt that the subgroup generated by C is finite. This if multi-ended Coxeter groups, and it would be in A	y. In adural					
@YCor, of course explicit information	your comment is entirely reasonable. There a n (see especially Thm. 8.7.3) but I don't wan	ire plenty more results in the cited text that give it to write them all out - Nick Gill Sep 10.14 at 1	more 18:22		• • • • • • • • • • • • • • • • • • •		≅) ∈	996

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		0000000	000	
Decompo	sing Coxeter	groups. III		

Proposition (M. Davis)

Let (W, S) be a Coxeter system. Then e(W) > 1 if and only if there exists a spherical ∞ -decomposition $S_{\Psi/A}$ of (W, S). In particular, Y. Cornulier's question has an affirmative answer.

Definition

A Coxeter system (W, S) is said to be completely spherically ∞ -decomposable, if there exists a family of subsets $(S_j)_j \in J$ such that

- $S = \bigcup_{j \in J} S_j;$
- (W_{S_j}, S_j) is a finite Coxeter group for all $j \in J$;
- for $j, k \in J, j \neq k, S_j, S_k$ is a spherical ∞ -decomposition of $(W_{S_j \cup S_k}, S_j \cup S_k)$.

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
		0000000		
Coxeter g	roups of dim	ension 1		

Proposition

Let (W, S) be a Coxeter system. Then the following are equivalent:

- $\operatorname{vcd}(W) \leq 1;$
- $\operatorname{cd}_{\mathbb{Q}}(Q) \leq 1$
- (W, S) is completely spherically ∞ -decomposable.

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		0000000	000	
Reduced	expressions			

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		000000	000	
Buildings				

Definition

A building is a simplicial complex \mathscr{B} which is the union of a family of simplicial subcomplexes \mathscr{A} which elements are called appartments with the following properties:

- B_1 Every appartment $\Sigma \in \mathscr{A}$ is a Coxeter complex;
- B_2 For any two simplices $A,B\in \mathscr{B}$ there is an appartment Σ containing both of them;
- B_3 For any two appartments Σ , $\Sigma' \in \mathscr{A}$ containing A and B there is an isomorphism $\Sigma \to \Sigma'$ fixing A and B pointwise.

Remark

In the above definition "empty sets" are allowed.

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		000000	000	
Buildings, II				

Remark

All appartments are isomorphic to a Coxeter complex of a fixed Coxeter group (W, S). Moreover, the type function $|_|: C(W, S) \to \mathcal{P}^{\sharp}(S)$ can be extended to a type function

$$|_| \colon \mathscr{B} \to \mathcal{P}^{\sharp}(S) \tag{1}$$

 $(\mathcal{P}^{\sharp} = \text{proper subsets.})$

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings			
000		0000000	000			
Decompositions and Craphs						

Decompositions and Graphs

- Let $S_{\mathbf{V}/\mathbf{A}} \subseteq S$ be a decomposition of the Coxeter system (W, S), i.e., $S = S_{\mathbf{A}} \cup S_{\mathbf{V}}$, and put $S_{\mathbf{e}} = S_{\mathbf{A}} \cap S_{\mathbf{V}}$.
- Let \mathscr{B}_{\bullet} denote all elements in \mathscr{B} of co-type S_{\bullet} .
- For B ∈ ℬ_● let B[▼] denote the face of B of cotype S_▼, and similar B[▲] the face of B of cotype S_▲.
- Let $\Gamma_{\mathbf{V}/\mathbf{A}}$ denote the graph (in the sense of J-P. Serre) given by

$$\begin{split} \mathscr{V} &= \mathscr{B}_{\mathbf{V}} \cup \mathscr{B}_{\mathbf{A}}, \\ \mathscr{E} &= \mathscr{B}_{\mathbf{0}} \sqcup \bar{\mathscr{B}}_{\mathbf{0}}, \\ o|_{\mathscr{B}} &= _^{\mathbf{V}}, \quad t|_{\mathscr{B}} = _^{\mathbf{A}} \end{split}$$

Then $\Gamma_{{\bf V}/{\bf A}}$ is a combinatorial graph. Moreover one has the following version of Ihara's theorem.

Theorem

Let $S_{\forall \land \land}$ be a decomposition of the Coxeter system (W, S) associated to the building \mathscr{B} . Then the following are equivalent:

- $S_{\mathbf{V}/\mathbf{A}}$ is an ∞ -decomposition of (W, S);
- Γ_{▼/▲} is a tree.

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	
000		0000000	000	
Topological of Rémy-Ronan type	Kac-Moody g	groups		

- Let \mathbb{F} be a finite field, and let $G(\mathbb{F})$ denote the \mathbb{F} -rational points of an almost split Kac-Moody group defined over \mathbb{F} with infinite Weyl group (W, S).
- Let Ξ denote the twin building associated to $G(\mathbb{F})$, and Ξ^+ the positive part of Ξ .
- Let $\overline{G}(\mathbb{F})$ denote the completion of $G(\mathbb{F})$ with respect to its discrete action of the locally finite simplicial complex $|\Xi^+|$, where $|\Xi^+|$ is the Davis-realization of Ξ^+ . Then $\overline{G}(\mathbb{F})$ is a totally disconnected locally compact group, and the same is true for the set of type-preserving elements $\overline{G}^{\circ}(\mathbb{F})$
- If $S_{\mathbf{V}/\mathbf{A}}$ is an ∞ -decomposition of (W, S), then by Bass-Serre theory -

$$\bar{G}^{\circ}(\mathbb{F}) \simeq \bar{G}^{\circ}_{\blacktriangle}(\mathbb{F}) \coprod_{\bar{G}^{\circ}_{\bullet}(\mathbb{F})} \bar{G}^{\circ}_{\blacktriangledown}(\mathbb{F}).$$

• If W is of virtual cohomological dimension 1, then $\overline{G}^{\circ}(\mathbb{F})$ is isomorphic to the fundamental group of a finite graph of "profinte groups" which edge maps are open embeddings.

Ihara's theorem	Coxeter groups	Decomposing Coxeter groups	Buildings	The Proof
000		0000000	000	•
The proof or why is it true!!				

• The principal idea of the proof the generalized lhara theorem is to define maps between the set of minimal galleries $\mathfrak{mgal}^{\pm}(\mathscr{B})$ with signature of the building \mathscr{B} and the set $\mathcal{P}_r(\Gamma_{\mathbf{V}/\mathbf{A}})$ of reduced paths in the graph $\Gamma_{\mathbf{V}/\mathbf{A}}$, and to study their properties in order to be able to show surjectivity (by induction).

