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Definition. A subgroup H of a group G is a precomponent if H
commutes with its distinct conjugates.
Then 〈HG 〉 = 〈Hg | g ∈ G} is the central product of the conjugates.

Examples: normal subgroups, subgroups of nilpotent groups of class 2,
groups H with H/(H ∩ Z(G )) non-abelian simple.

They arise often:

• components in finite groups,
(precomponents H with H/(H ∩ Z(G )) simple and H perfect)

• the ‘natural’ direct summands of base groups of wreath products
• restricted stabilizers for group actions on rooted trees
• restricted stabilizers for actions on other sets, e.g. totally ordered sets

Aim: unified approach to precomponents via first-order group theory.
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Let H 6 G .

Hx ∼ Hy if ∃n, ∃x0 = x , x2, . . . , xn = y with [Hxi−1 ,Hxi ] 6= 1 for all i .

P = 〈Hx | Hx ∼ H} is the unique smallest precomp. containing H.

Notation: C2
G (X ) = CG (CG (X )).

Let P be a precomponent.

P / 〈Px | x ∈ G 〉 / G . Also P / C2
G (P):

x ∈ C2
G (P) ⇒ x centralizes CG (P)

⇒ x normalises all Pg 6= P ⇒ x ∈ NG (P).

When does the obvious graph have (uniformly) bounded diameter?
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First-order sentences/formulae

(∀x∀y∀z)([x , y , z ] = 1) G nilp. of class 6 2 Yes!
(∀x ∈ G ′)(∀z)([x , z ] = 1) G nilp. of class 6 2 No!

(∀x1∀x2∀x3∀x4)(∃y1, y2)([x1, x2][x3, x4] = [y1, y2])
every element of G ′ is a commutator

(∀x1∀x2∃y)(y 6= x1 ∧ y 6= x2) |G | > 3
(∀x1∀x2∀x3∀x4)(

∨
16i<j64 xi = xj) |G | 6 3

(∀x)(x6 = 1→ x = 1) no elements of order 2, 3

g4 = 1 ∧ g2 6= 1 g has order 4

(∀k 6= 1)(∀g)(∃r ∈ N)(∃x1, . . . , xr )(g = kx1kx2 . . . kxr ) No!
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Classes of finite groups defined by a sentence

(1) {groups of order 6 n}, {groups of order > n}, {groups with no
elements of order n}, nilpotent groups of class 6 2.

(2) Felgner’s Theorem (1990). ∃ sentence σ (in the f.-o. language of
group theory) such that, for G finite, G |= σ ⇔ G is non-abelian simple.

σ = σ1 ∧ σ2 with

σ1: (∀x∀y)(x 6= 1 ∧ CG (x , y) 6= {1} →
⋂

g∈G (CG (x , y)CG (CG (x , y)))g = {1}),
σ2: ‘each element is a product of κ0 commutators’ for a fixed κ0 ∈ N.

(3) Finite soluble groups:

They are characterized (among finite groups) by ‘no g 6= 1 is a prod. of
commutators [gh, gk ]’; that is, ρn holds ∀n

ρn : (∀g∀x1 . . . ∀xn∀y1 . . . ∀yn)(g = 1 ∨ g 6= [g x1 , g y1 ] . . . [g xn , g yn ]).

Theorem (JSW 2005). Finite G is soluble iff it satisfies ρ56.
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Quasisimple groups

G is quasisimple if G perfect and G/Z(G ) simple

Proposition (JSW 2017). Finite G is quasisimple iff Q satisfies
QS1 ∧ QS2 ∧ QS3:

QS1: each element is a product of two commutators;
QS2: (∀x)(∀u)[x , xu] ∈ Z(G )→ x ∈ Z(G );
QS3:
(∀x∀y)(x /∈Z(G )∧CG (x , y)>Z(G ))→

⋂
g∈G (CG (x , y)C2

G (x , y))g = Z(G ).
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Definable sets

. . . sets of elements g ∈ G (or in G (n) = G × · · · × G ) defined by
first-order formulae, possibly with parameters from G .

Examples: • Z(G ), defined by (∀y)([x , y ] = 1)

• CG (h), defined by [x , h] = 1

• Centralizers of definable sets are definable:
Say S = {s | ϕ(s)}; then CG (S) = {t | ∀g(ϕ(g)→ [g , t] = 1)}

The (soluble) radical R(G ) of a finite group G is the largest soluble normal
subgroup of G .

Theorem (JSW 2008). There’s a f.-o. formula r(x) such that if G is
finite and g ∈ G then g ∈ R(G ) iff r(g) holds in G .
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The sets Xh,Wh

• Xh = {[h−1, hg ] | g ∈ G}, Wh =
⋃
{Xhg | g ∈ G , [Xh,Xhg ] 6= 1}.

ϕ1(h, x) : (∃y)(x = [h−1, hy ]) (defines Xh)
ϕ2(h, x) : (∃t∃y1∃y2)(ϕ1(h, y1) ∧ ϕ1(ht , y2) ∧ ϕ1(ht , x) ∧ [y1, y2] 6= 1)

(defines Wh)
ϕ3(h, x) : (∀y)(ϕ2(h, y)→ [x , y ] = 1) CG (Wh)
γ(h, x) : (∀y)(φ3(h, y)→ [x , y ] = 1) C2

G (Wh)

• ε6(x , y) : ε6(h1, h2) iff C2
G (Wh1) 6 C2

G (Wh2)
{(h1, h2) | ε6(h1, h2)} definable in G × G ; leads to a definable equiv.
relation
• ∃ β(x) : β(h) iff C2

G (Wh) commutes with its distinct conjugates.
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G finite: component = quasisimple subgroup Q that commutes with its
distinct G -conjugates (⇔ Q subnormal).

Theorem (JSW 2017). ∃ f.o. formulae π(h, y), π′(h), π′c(h), π′m(h) such
that for every finite G , the products of components of G are the sets
{x | π(h, x)} for the h ∈ G satisfying π′(h).

The components: the sets {x | π(h, x)} for which π′c(h) holds.
The non-ab. min. normal subgps.: {x | π(h, x)} with π′m(h).
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Define δr for r > 1 recursively by δ1(x1, x2) = [x1, x2] and
δr (x1, . . . , x2r ) = [δr−1(x1, . . . , x2r−1), δr−1(x2r−1+1, . . . , x2r )] for r > 1.

γ(h, x) : (∀y)(φ3(h, y)→ [x , y ] = 1) C2
G (Wh)

α1(h, x) : (∃y1 . . . ∃y16)(
(∧16

n=1 γ(h, yn)
)
∧ x = δ4(y1, . . . , y16))
δ4-value in C2

G (Wh)
α(h, x) : (∃y1∃y2)(α1(h, y1) ∧ α1(h, y1) ∧ x = y1y2)

Let G be finite, Q a component. If h ∈ Q \ Z(Q) then Q = 〈Wh〉, so
Q 6 C2

G (Wh).
Show Q = set of prods. of 2 δ4-values in C2

G (Wh), so Q = {x | α(h, x)}.
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Automorphism groups of ordered sets

Write AutO(Ω) for the group of order AMs of a totally ordered set Ω.

Theorem (Andrew Glass and JSW, 2017). Suppose that AutO(Ω) acts
transitively on Ω.
(a) If AutO(Ω), AutO(R) satisfy the same first-order sentences then
Ω ∼= R (as ordered set).
(b) If AutO(Ω), AutO(Q) satisfy the same first-order sentences then
Ω ∼= Q or Ω ∼= R \Q.

Same conclusion by Gurevich and Holland (1981) with the stronger
hypothesis that AutO(Ω) acts transitively on pairs (α, β) with α < β.

Transitivity is necessary. Let Ω = R× {0, 1} with alphabetic order:
(r1, λ1) < (r2, λ2) if r1 < r2 or if r1 = r2 and λ1 < λ2.
Then AutO(R× {0, 1}) ∼= AutO(R).
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Let Ω be totally ordered.
For f , g ∈ AutO(Ω) define f ∨ g , f ∧ g ∈ AutO(Ω) by

α(f ∨ g) = max{αf , αg}, α(f ∧ g) = min{αf , αg} for all α ∈ Ω.

An `-permutation group on Ω is a subgroup G 6 AutO(Ω) closed for ∨, ∧.
Let G be a trans. `-perm. group on Ω. A convex set ∆ ⊆ Ω is an o-block
if either ∆g = ∆ or ∆g ∩∆ = ∅ for each g ∈ G .
Stabilizer and rigid stabilizer of o-block ∆ are defined by

Stab(∆) := {g ∈ G | ∆g = ∆}, rst(∆) := {g ∈ G | supp(g) ⊆ ∆},

G is o-primitive if 6 ∃ o-blocks apart from Ω and singletons.
G is o-2 transitive if transitive on all (α1, α2) ∈ Ω× Ω with α1 < α2.
o-2-transitivity =⇒ o-primitivity.

‘McCleary’s Trichotomy’. Transitive f.d. o-primitive `-permutation
groups are o-2 transitive or right regular representations of subgroups of R.
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Technicalities

Lemma. Let G be o-2 transitive on Ω and g , h ∈ G with
supp(h) ∩ supp(hg ) = ∅ and h 6= 1. Then ∃ f , k ∈ G such that

[h−1, hf ][h−g , hgk ] 6= [h−g , hgk ][h−1, hf ].

For g ∈ G and each union Λ of convex g -invariant subsets of Ω, let
dep(g ,Λ) be the element of AutO(Ω) that agrees with g on Λ and with
the identity elsewhere. Say G fully depressible (f.d.) on Ω if dep(g ,Λ) ∈ G
for all g ∈ G and all such Λ ⊆ Ω.
AutO(Ω) is fully depressible.
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Let G be a f.d. transitive `-perm. group on Ω.
Write B(α, β) for the smallest o-block containing both α, β ∈ Ω.
Let T = {B(α, β) | α 6= β}.
Assume Stab(∆) acts on ∆ as a non-abelian group for all ∆ ∈ T .

Recall that

Xh := {[h−1, hg ] | g ∈ G} and Wh =
⋃
{Xhg | g ∈ G , [Xh,Xhg ] 6= 1}.

For ∆ ∈ T , let

Q∆ = {h ∈ rst(∆) | (∃α ∈ Ω)(B(αh, α)) = ∆}.

As G transitive and f.d., Q∆ 6= ∅. Since (rst(∆))g = rst(∆g) commutes
with rst(∆) for g /∈ Stab(∆), we have

Xh ⊆ rst(∆) and Wh ⊆ rst(∆) for all ∆ ∈ T and h ∈ Q∆.
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Proposition 1. Let ∆ ∈ T and h ∈ Q∆.

(a) Wh =
⋃
{Xhg | g ∈ Stab(∆)}.

(b) CG (Wh) is the pointwise stabilizer of ∆.

(c) C2
G (Wh) = rst(∆). In particular, C2

G (Wh) is independent of h ∈ Q∆:

Corollary. G is o-primitive on Ω iff C2
G (Wg ) = G for all g ∈ G \ {1}.

So if (G1,Ω1), (G2,Ω2) are transitive f.d. `-groups that satisfy the same
f.-o. sentences, and G1 is o-primitive, then so is G2.

Proof of the Theorem. Let Λ = R or Λ = Q, let AutO(Ω), AutO(Λ) satisfy
same f.-o. sentences. Enough to prove AutO(Ω) o-2-transitive.
AutO(Λ) is o-2-transitive on Λ, so o-primitive, non-abelian. So AutO(Ω) is
non-abelian and o-primitive by Corollary. Now use McCleary’s trichotomy.

(Proof shows that if G 6 AutO(Ω) transitive and f.d. then Ω ∼= Λ.)
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The rooted tree of type (2, 3, 2, 3, . . . )
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The rooted tree of type (2, 3, 2, 3, . . . )

Let G act faithfully on T fixing v .
Second layer L2 is a union of G -orbits
rstG (u) – elements moving only vertices in Tu

rstG (2) = 〈rstG (w) | w ∈ 2nd layer〉, the dir. product.

John Wilson June 27, 2018 17 / 1



Fix (mn)n>0, a sequence of integers mn > 2.

The rooted tree T of type (mn) has a root vertex v0 of valency m0. Each
vertex of distance n > 1 from v0 has valency mn + 1.
nth layer Ln: all vertices u at distance n from v0.
So mn edges descend from each u ∈ Ln.
For a vertex u, the subtree with root u is Tu.

Let G act faithfully on T .
rstG (u) = {g | g fixes each vertex outside Tu}.
rstG (n) = 〈rstG (u) | u ∈ Ln〉.

G acts as a branch group on T if for each n,
• G acts transitively on Ln,
• rstG (n) has finite index in G .
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Definition. G is Boolean if G 6= 1 and
• G/K is vA (virtually abelian) whenever 1 < K 6 G ;
• G has no non-trivial vA normal subgroups.

Branch groups are Boolean.
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Structure lattice

Assume G is Boolean.

L(G ) = {H 6 G | |G : NG (H)| finite} – a lattice of subgroups of G .

(A) Let H,K ∈ L(G ). Then H ∩ K = 1 iff [H,K ] = 1.
(B) If H ∈ L(G ) then ∃U 6f G with

〈H,CG (H)〉 = H × CG (H) > U ′.

Write H1 ∼ H2 iff CG (H1) = CG (H2). An equiv. reln. on L(G ).

(C) The lattice operations in L(G ) induce well-defined join and meet
operations ∨, ∧ in

L = L(G ) = L(G )/∼.

L is the structure lattice of G ; greatest and least elements [G ] and
[1] = {1}. It’s a Boolean lattice:
a ∨ (b1 ∧ b2) = (a ∨ b1) ∧ (a ∨ b2), . . . , has complements
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Characterization of branch groups

Assume G Boolean. Let
Γ(G ) = {[B] ∈ L | B a precomp. }.
Conjugation induces an action of G on Γ(G ); faithful if

(Branch1)
⋂

(NG (B) |B a precomponent in L) = 1.

Now assume also

(Branch2) For each precomponent A 6= 1 in L the normal closure of⋂
(NG (B) | B non-triv. precomp. in L, A ∩ B = 1)

has fin. index in G .

Then Γ(G ) has subtrees on which G acts as a branch group.
Conversely, branch groups on T satisfy these conditions and T embeds
G -equivariantly in Γ(G ).
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Interpretations: an example

K a field witn |K | > 2, let T the mult. group K \ {0}.

G =

{(
1 x
0 t

)
| x ∈ K , t ∈ T

}
.

Write (x , t) for above matrix,
A = {(x , 1) | x ∈ K} ∼= K+ and H = {(0, t) | t ∈ T} ∼= T .
So A / G , G = Ao H. Fix e = (1, 1) ∈ A and f = (0, λ) ∈ H \ {1}.
A = {k | (∀g) [k , kg ] = 1} definable in G ,
H = {g | g f = g} = CG (f ) definable (with parameters e, f ).
For a, b in A define
a + b = ab,

a ∗ b =

{
1 if a or b = 1

ag if not, where b = eg with g ∈ G .
A becomes a field isomorphic to K .
The set A and the operations on A are definable in G . An interpretation
(with parameter e) of the field K in the group G .
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Structure graph

Branch groups G can have branch actions on essentially different maximal
trees. These actions are encoded in the structure graph Γ(G ):

• vertices the classes [B] ∈ L(G ) containing a precomp. B;
• join [B1], [B2] by an edge if [B1] 6 [B2] or [B2] 6 [B1], and
6 ∃ intermediate classes in the ordering inherited from L(G ).

Conjugation in G induces an action on L(G ) and Γ(G ).

The tree on which G acts embeds equivariantly in the structure graph;
often the embedding is an equivariant IM of trees.

In this case G ‘knows’ its tree: we can find the tree ‘within’ G .
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New description of structure graph

C2
G (Y ) for CG (CG (Y )), etc. So Y ⊆ C2

G (Y ), C3
G (Y ) = CG (Y ).

H ∈ L(G ) is C2-closed if H = C2
G (H).

(E) Let G be a branch group.

(a) If H1, H2 ∈ L(G ) have same centralizer then C2
G (H1) = C2

G (H2).

(b) B a precomp. ⇒ C2
G (B) a precomp.

(c) B1 < B2 precomps., C2-closed ⇒ NG (B1) < NG (B2).

The graph B(G ) has
• vertices the non-trivial C2-closed precomps.,
• edge between vertices if one a maximal proper C2-closed precomp.

in the other.

G acts on B(G ) by conjugation.

John Wilson June 27, 2018 24 / 1



(F) G branch, on tree T , and v a vertex. Then
C2
G (rstG (v)) = rstG (v), so rst(v) ∈ B(G ).

Proof . Clearly rstG (v) 6 C2
G (rstG (v)). Let h ∈ C2

G (rst(v)). Must prove h
fixes every vertex /∈ Tv , follows if h fixes every such u of level > level of v .
We have rstG (u) 6 C(rstG (v)), so h centralizes rstG (u). Thus
rstG (u) = (rstG (u))h = rstG (uh), and so uh = u.

Theorem (JSW, 2015). G branch, acting on T .

(a) B 7→ [B] is a G -equivariant IM B(G )→ Γ(G ).

(b) v 7→ rstG (v) is a G -equivt. order-preserving injective map T → B(G ).
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Properties of B = B(G ) for branch G :

• G is the only vertex fixed in the G -action on B
• the orbit O(B) of each vertex B is finite

• each vertex B is connected to vertex G by a finite path; all simple
such paths have length 6 log2(|O(B)|)
• ∀ B ∈ B ∃ branch action for which B is the restricted stabilizer of a

vertex

• if B is a tree then G acts on it as a branch group.

Questions about B = B(G )
• finite valency?
• can there be exactly ℵ0 maximal trees?
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Now G is a branch group.

Recall
Xh = {[h−1, hg ] | g ∈ G},
Wh =

⋃
{Xhg | g ∈ G , [Xh,Xhg ] 6= 1}.

β(x) : β(h) iff C2
G (Wh) commutes with its distinct conjugates

Key Proposition. ∀B ∈ B(G ), ∃ h ∈ G with B = C2
G (Wh).

Proof uses (among other things) the result of Hardy, Abért: branch groups
satisfy no group laws. In particular, if u ∈ T then ∃ x , y ∈ rstG (u) with
(xy)2 6= y2x2.
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Interpretation in branch groups

Theorem (JSW, 2015). There are first-order formulae τ , β(x), ε(x , y)
s.t. the following holds for each branch group G :

(a) G has a branch action on a unique maximal tree up to G -equivariant
IM iff G |= τ ;

(b) S = {x | β(x)} is a union of conj. classes, so G acts on it by
conjugation;

(c) the relation on S defined by ε(x , y) is a G -invariant preorder. So
Q = S/∼, where ∼ is the equiv. relation defined by δ(x , y) ∧ δ(y , x),
is a poset on which G acts;

(d) Q is G -equivariantly isom. as poset to structure graph L(G ).

When G has a branch action on a unique maximal tree T , this represents
T as quotient of a definable subset of G modulo a definable equivalence
relation. A parameter-free interpretation for T , and for the action on T .
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