Branch groups and their trees, and ordered sets

John Wilson

jsw13@cam.ac.uk; John.Wilson@maths.ox.ac.uk; wilson@math.uni-leipzig.de

Düsseldorf, 26 June 2018

Definition. A subgroup H of a group G is a precomponent if H commutes with its distinct conjugates.
Then $\left.\left\langle H^{G}\right\rangle=\left\langle H^{g}\right| g \in G\right\}$ is the central product of the conjugates.
Examples: normal subgroups, subgroups of nilpotent groups of class 2, groups H with $H /(H \cap Z(G))$ non-abelian simple.
They arise often:

- components in finite groups,
(precomponents H with $H /(H \cap Z(G))$ simple and H perfect)
- the 'natural' direct summands of base groups of wreath products
- restricted stabilizers for group actions on rooted trees
- restricted stabilizers for actions on other sets, e.g. totally ordered sets

Aim: unified approach to precomponents via first-order group theory.

Let $H \leqslant G$.
$H^{x} \sim H^{y}$ if $\exists n, \exists x_{0}=x, x_{2}, \ldots, x_{n}=y$ with $\left[H^{x_{i-1}}, H^{x_{i}}\right] \neq 1$ for all i. $\left.P=\left\langle H^{x}\right| H^{x} \sim H\right\}$ is the unique smallest precomp. containing H.
Notation: $\mathrm{C}_{G}^{2}(X)=\mathrm{C}_{G}\left(\mathrm{C}_{G}(X)\right)$.
Let P be a precomponent.
$P \triangleleft\left\langle P^{x} \mid x \in G\right\rangle \triangleleft G$. Also $P \triangleleft C_{G}^{2}(P)$:
$x \in \mathrm{C}_{G}^{2}(P) \Rightarrow x$ centralizes $\mathrm{C}_{G}(P)$
$\Rightarrow x$ normalises all $P^{g} \neq P \Rightarrow x \in \mathrm{~N}_{G}(P)$.
When does the obvious graph have (uniformly) bounded diameter?

First-order sentences/formulae

$$
\begin{array}{lll}
(\forall x \forall y \forall z)([x, y, z]=1) & G \text { nilp. of class } \leqslant 2 & \text { Yes! } \\
\left(\forall x \in G^{\prime}\right)(\forall z)([x, z]=1) & G \text { nilp. of class } \leqslant 2 & \text { No! } \\
\left(\forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4}\right)\left(\exists y_{1}, y_{2}\right)\left(\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right]=\left[y_{1}, y_{2}\right]\right) & \\
\text { every element of } G^{\prime} \text { is a commutator } & \\
\left(\forall x_{1} \forall x_{2} \exists y\right)\left(y \neq x_{1} \wedge y \neq x_{2}\right) \quad \quad|G| \geqslant 3 & \\
\left(\forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4}\right)\left(V_{1 \leqslant i<j \leqslant 4} x_{i}=x_{j}\right) & |G| \leqslant 3 & \\
(\forall x)\left(x^{6}=1 \rightarrow x=1\right) & \text { no elements of order } 2,3 & \\
g^{4}=1 \wedge g^{2} \neq 1 & g \text { has order 4 } & \\
(\forall k \neq 1)(\forall g)(\exists r \in \mathbb{N})\left(\exists x_{1}, \ldots, x_{r}\right)\left(g=k^{x_{1}} k^{x_{2}} \ldots k^{x_{r}}\right) & \text { No! }
\end{array}
$$

Classes of finite groups defined by a sentence

(1) $\{$ groups of order $\leqslant n\}$, $\{$ groups of order $\geqslant n\}$, $\{$ groups with no elements of order $n\}$, nilpotent groups of class $\leqslant 2$.
(2) Felgner's Theorem (1990). \exists sentence σ (in the f.-o. language of group theory) such that, for G finite, $\quad G \models \sigma \Leftrightarrow G$ is non-abelian simple. $\sigma=\sigma_{1} \wedge \sigma_{2}$ with
$\sigma_{1}:(\forall x \forall y)\left(x \neq 1 \wedge C_{G}(x, y) \neq\{1\} \rightarrow \bigcap_{g \in G}\left(C_{G}(x, y) C_{G}\left(C_{G}(x, y)\right)\right)^{g}=\{1\}\right)$, σ_{2} : 'each element is a product of κ_{0} commutators' for a fixed $\kappa_{0} \in \mathbb{N}$.
(3) Finite soluble groups:

They are characterized (among finite groups) by 'no $g \neq 1$ is a prod. of commutators $\left[g^{h}, g^{k}\right]^{\prime}$; that is, ρ_{n} holds $\forall n$

$$
\rho_{n}:\left(\forall g \forall x_{1} \ldots \forall x_{n} \forall y_{1} \ldots \forall y_{n}\right)\left(g=1 \vee g \neq\left[g^{x_{1}}, g^{y_{1}}\right] \ldots\left[g^{x_{n}}, g^{y_{n}}\right]\right) .
$$

Theorem (JSW 2005). Finite G is soluble iff it satisfies ρ_{56}.

Quasisimple groups

G is quasisimple if G perfect and $G / Z(G)$ simple
Proposition (JSW 2017). Finite G is quasisimple iff Q satisfies $\mathrm{QS}_{1} \wedge \mathrm{QS}_{2} \wedge \mathrm{QS}_{3}:$
QS_{1} : each element is a product of two commutators;
QS $_{2}:(\forall x)(\forall u)\left[x, x^{u}\right] \in \mathrm{Z}(G) \rightarrow x \in \mathrm{Z}(G)$;
$\mathrm{QS}_{3}:$
$(\forall x \forall y)\left(x \notin Z(G) \wedge C_{G}(x, y)>Z(G)\right) \rightarrow \bigcap_{g \in G}\left(C_{G}(x, y) C_{G}^{2}(x, y)\right)^{g}=Z(G)$.

Definable sets

... sets of elements $g \in G$ (or in $G^{(n)}=G \times \cdots \times G$) defined by first-order formulae, possibly with parameters from G.

Examples: • $Z(G)$, defined by $(\forall y)([x, y]=1)$

- $C_{G}(h)$, defined by $[x, h]=1$
- Centralizers of definable sets are definable: Say $S=\{s \mid \varphi(s)\}$; then $C_{G}(S)=\{t \mid \forall g(\varphi(g) \rightarrow[g, t]=1)\}$

The (soluble) radical $\mathrm{R}(G)$ of a finite group G is the largest soluble normal subgroup of G.

Theorem (JSW 2008). There's a f.-o. formula $r(x)$ such that if G is finite and $g \in G$ then $g \in R(G)$ iff $r(g)$ holds in G.

The sets X_{h}, W_{h}

- $X_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}, \quad W_{h}=\bigcup\left\{X_{h^{g}} \mid g \in G,\left[X_{h}, X_{h^{g}}\right] \neq 1\right\}$.

$$
\begin{array}{rlr}
\varphi_{1}(h, x): & (\exists y)\left(x=\left[h^{-1}, h^{y}\right]\right) & \left(\text { defines } X_{h}\right) \\
\varphi_{2}(h, x): & \left(\exists t \exists y_{1} \exists y_{2}\right)\left(\varphi_{1}\left(h, y_{1}\right) \wedge \varphi_{1}\left(h^{t}, y_{2}\right) \wedge \varphi_{1}\left(h^{t}, x\right) \wedge\right. & \left.\left[y_{1}, y_{2}\right] \neq 1\right) \\
\text { (defines } \left.W_{h}\right) \\
\varphi_{3}(h, x): & (\forall y)\left(\varphi_{2}(h, y) \rightarrow[x, y]=1\right) & C_{G}\left(W_{h}\right) \\
\gamma(h, x): & (\forall y)\left(\phi_{3}(h, y) \rightarrow[x, y]=1\right) & C_{G}^{2}\left(W_{h}\right)
\end{array}
$$

- $\varepsilon_{\leqslant}(x, y): \varepsilon_{\leqslant}\left(h_{1}, h_{2}\right)$ iff $\mathrm{C}_{G}^{2}\left(W_{h_{1}}\right) \leqslant \mathrm{C}_{G}^{2}\left(W_{h_{2}}\right)$
$\left\{\left(h_{1}, h_{2}\right) \mid \varepsilon_{\leqslant}\left(h_{1}, h_{2}\right)\right\}$ definable in $G \times G$; leads to a definable equiv.

relation

- $\exists \beta(x): \beta(h)$ iff $C_{G}^{2}\left(W_{h}\right)$ commutes with its distinct conjugates.
G finite: component $=$ quasisimple subgroup Q that commutes with its distinct G-conjugates ($\Leftrightarrow Q$ subnormal).

Theorem (JSW 2017). \exists f.o. formulae $\pi(h, y), \pi^{\prime}(h), \pi_{c}^{\prime}(h), \pi_{m}^{\prime}(h)$ such that for every finite G, the products of components of G are the sets $\{x \mid \pi(h, x)\}$ for the $h \in G$ satisfying $\pi^{\prime}(h)$.
The components: the sets $\{x \mid \pi(h, x)\}$ for which $\pi_{c}^{\prime}(h)$ holds.
The non-ab. min. normal subgps.: $\{x \mid \pi(h, x)\}$ with $\pi_{\mathrm{m}}^{\prime}(h)$.

Define δ_{r} for $r \geqslant 1$ recursively by $\delta_{1}\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]$ and $\delta_{r}\left(x_{1}, \ldots, x_{2^{r}}\right)=\left[\delta_{r-1}\left(x_{1}, \ldots, x_{2^{r-1}}\right), \delta_{r-1}\left(x_{2^{r-1}+1}, \ldots, x_{2^{r}}\right)\right]$ for $r>1$.

\[

\]

Let G be finite, Q a component. If $h \in Q \backslash Z(Q)$ then $Q=\left\langle W_{h}\right\rangle$, so $Q \leqslant C_{G}^{2}\left(W_{h}\right)$.
Show $Q=$ set of prods. of $2 \delta_{4}$-values in $C_{G}^{2}\left(W_{h}\right)$, so $Q=\{x \mid \alpha(h, x)\}$.

Automorphism groups of ordered sets

Write $\operatorname{Aut}_{O}(\Omega)$ for the group of order AMs of a totally ordered set Ω.
Theorem (Andrew Glass and JSW, 2017). Suppose that Aut $_{O}(\Omega)$ acts transitively on Ω.
(a) If $\operatorname{Aut}_{O}(\Omega)$, Aut ${ }_{O}(\mathbb{R})$ satisfy the same first-order sentences then $\Omega \cong \mathbb{R}$ (as ordered set).
(b) If $\operatorname{Aut}_{O}(\Omega)$, $\operatorname{Aut}_{O}(\mathbb{Q})$ satisfy the same first-order sentences then $\Omega \cong \mathbb{Q}$ or $\Omega \cong \mathbb{R} \backslash \mathbb{Q}$.

Same conclusion by Gurevich and Holland (1981) with the stronger hypothesis that $\operatorname{Aut}_{O}(\Omega)$ acts transitively on pairs (α, β) with $\alpha<\beta$.

Transitivity is necessary. Let $\Omega=\mathbb{R} \times\{0,1\}$ with alphabetic order: $\left(r_{1}, \lambda_{1}\right)<\left(r_{2}, \lambda_{2}\right)$ if $r_{1}<r_{2}$ or if $r_{1}=r_{2}$ and $\lambda_{1}<\lambda_{2}$. Then $\operatorname{Aut}_{O}(\mathbb{R} \times\{0,1\}) \cong \operatorname{Aut}_{O}(\mathbb{R})$.

Let Ω be totally ordered.
For $f, g \in \operatorname{Aut}_{O}(\Omega)$ define $f \vee g, f \wedge g \in \operatorname{Aut}_{O}(\Omega)$ by

$$
\alpha(f \vee g)=\max \{\alpha f, \alpha g\}, \quad \alpha(f \wedge g)=\min \{\alpha f, \alpha g\} \quad \text { for all } \alpha \in \Omega
$$

An ℓ-permutation group on Ω is a subgroup $G \leqslant \operatorname{Aut}_{O}(\Omega)$ closed for \vee, \wedge. Let G be a trans. ℓ-perm. group on Ω. A convex set $\Delta \subseteq \Omega$ is an o-block if either $\Delta g=\Delta$ or $\Delta g \cap \Delta=\emptyset$ for each $g \in G$. Stabilizer and rigid stabilizer of o-block Δ are defined by

$$
\operatorname{Stab}(\Delta):=\{g \in G \mid \Delta g=\Delta\}, \quad \operatorname{rst}(\Delta):=\{g \in G \mid \operatorname{supp}(g) \subseteq \Delta\}
$$

G is o-primitive if \nexists o-blocks apart from Ω and singletons.
G is o-2 transitive if transitive on all $\left(\alpha_{1}, \alpha_{2}\right) \in \Omega \times \Omega$ with $\alpha_{1}<\alpha_{2}$. o-2-transitivity \Longrightarrow o-primitivity.
‘McCleary’s Trichotomy’. Transitive f.d. o-primitive ℓ-permutation groups are o-2 transitive or right regular representations of subgroups of \mathbb{R}.

Technicalities

Lemma. Let G be o-2 transitive on Ω and $g, h \in G$ with $\operatorname{supp}(h) \cap \operatorname{supp}\left(h^{g}\right)=\emptyset$ and $h \neq 1$. Then $\exists f, k \in G$ such that

$$
\left[h^{-1}, h^{f}\right]\left[h^{-g}, h^{g k}\right] \neq\left[h^{-g}, h^{g k}\right]\left[h^{-1}, h^{f}\right] .
$$

For $g \in G$ and each union Λ of convex g-invariant subsets of Ω, let $\operatorname{dep}(g, \Lambda)$ be the element of $\operatorname{Aut}_{O}(\Omega)$ that agrees with g on Λ and with the identity elsewhere. Say G fully depressible (f.d.) on Ω if $\operatorname{dep}(g, \Lambda) \in G$ for all $g \in G$ and all such $\Lambda \subseteq \Omega$. Aut $_{O}(\Omega)$ is fully depressible.

Let G be a f.d. transitive ℓ-perm. group on Ω.
Write $B(\alpha, \beta)$ for the smallest o-block containing both $\alpha, \beta \in \Omega$.
Let $T=\{B(\alpha, \beta) \mid \alpha \neq \beta\}$.
Assume $\operatorname{Stab}(\Delta)$ acts on Δ as a non-abelian group for all $\Delta \in T$.
Recall that

$$
X_{h}:=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\} \quad \text { and } \quad W_{h}=\bigcup\left\{X_{h^{g}} \mid g \in G,\left[X_{h}, X_{h g}\right] \neq 1\right\}
$$

For $\Delta \in T$, let

$$
Q_{\Delta}=\{h \in \operatorname{rst}(\Delta) \mid(\exists \alpha \in \Omega)(B(\alpha h, \alpha))=\Delta\} .
$$

As G transitive and f.d., $Q_{\Delta} \neq \emptyset$. Since $(\operatorname{rst}(\Delta))^{g}=\operatorname{rst}(\Delta g)$ commutes with $\operatorname{rst}(\Delta)$ for $g \notin \operatorname{Stab}(\Delta)$, we have

$$
X_{h} \subseteq \operatorname{rst}(\Delta) \quad \text { and } \quad W_{h} \subseteq \operatorname{rst}(\Delta) \quad \text { for all } \quad \Delta \in T \text { and } h \in Q_{\Delta}
$$

Proposition 1. Let $\Delta \in T$ and $h \in Q_{\Delta}$.
(a) $\quad W_{h}=\bigcup\left\{X_{h^{g}} \mid g \in \operatorname{Stab}(\Delta)\right\}$.
(b) $\mathrm{C}_{G}\left(W_{h}\right)$ is the pointwise stabilizer of Δ.
(c) $\mathrm{C}_{G}^{2}\left(W_{h}\right)=\operatorname{rst}(\Delta)$. In particular, $\mathrm{C}_{G}^{2}\left(W_{h}\right)$ is independent of $h \in Q_{\Delta}$:

Corollary. G is o-primitive on Ω iff $C_{G}^{2}\left(W_{g}\right)=G$ for all $g \in G \backslash\{1\}$. So if $\left(G_{1}, \Omega_{1}\right),\left(G_{2}, \Omega_{2}\right)$ are transitive f.d. ℓ-groups that satisfy the same f.-o. sentences, and G_{1} is o-primitive, then so is G_{2}.

Proof of the Theorem. Let $\Lambda=\mathbb{R}$ or $\Lambda=\mathbb{Q}$, let $\operatorname{Aut}_{O}(\Omega)$, Aut ${ }_{O}(\Lambda)$ satisfy same f.-o. sentences. Enough to prove $\operatorname{Aut}_{O}(\Omega)$ o-2-transitive. Aut $_{O}(\Lambda)$ is o-2-transitive on Λ, so o-primitive, non-abelian. So Aut $O_{O}(\Omega)$ is non-abelian and o-primitive by Corollary. Now use McCleary's trichotomy.
(Proof shows that if $G \leqslant \operatorname{Aut}_{O}(\Omega)$ transitive and f.d. then $\Omega \cong \Lambda$.)

The rooted tree of type $(2,3,2,3, \ldots)$

The rooted tree of type $(2,3,2,3, \ldots)$

Let G act faithfully on T fixing v.
Second layer L_{2} is a union of G-orbits
rst $_{G}(u)$ - elements moving only vertices in T_{u} $\operatorname{rst}_{G}(2)=\left\langle\operatorname{rst}_{G}(w)\right| w \in$ 2nd layer \rangle, the dir. product.

Fix $\left(m_{n}\right)_{n \geqslant 0}$, a sequence of integers $m_{n} \geqslant 2$.
The rooted tree T of type $\left(m_{n}\right)$ has a root vertex v_{0} of valency m_{0}. Each vertex of distance $n \geqslant 1$ from v_{0} has valency $m_{n}+1$. nth layer L_{n} : all vertices u at distance n from v_{0}. So m_{n} edges descend from each $u \in L_{n}$.
For a vertex u, the subtree with root u is T_{u}.
Let G act faithfully on T.
$\operatorname{rst}_{G}(u)=\left\{g \mid g\right.$ fixes each vertex outside $\left.T_{u}\right\}$.
$\operatorname{rst}_{G}(n)=\left\langle\operatorname{rst}_{G}(u) \mid u \in L_{n}\right\rangle$.
G acts as a branch group on T if for each n,

- G acts transitively on L_{n},
- $\operatorname{rst}_{G}(n)$ has finite index in G.

Definition. G is Boolean if $G \neq 1$ and

- G / K is vA (virtually abelian) whenever $1<K \leqslant G$;
- G has no non-trivial vA normal subgroups.

Branch groups are Boolean.

Structure lattice

Assume G is Boolean.
$\mathrm{L}(G)=\left\{H \leqslant G| | G: \mathrm{N}_{G}(H) \mid\right.$ finite $\}$ - a lattice of subgroups of G.
(A) Let $H, K \in \mathbf{L}(G)$. Then $H \cap K=1$ iff $[H, K]=1$.
(B) If $H \in \mathbf{L}(G)$ then $\exists U \leqslant_{f} G$ with

$$
\left\langle H, \mathrm{C}_{G}(H)\right\rangle=H \times \mathrm{C}_{G}(H) \geqslant U^{\prime} .
$$

Write $H_{1} \sim H_{2}$ iff $\mathrm{C}_{G}\left(H_{1}\right)=\mathrm{C}_{G}\left(H_{2}\right)$. An equiv. reln. on $\mathbf{L}(G)$.
(C) The lattice operations in $\mathbf{L}(G)$ induce well-defined join and meet operations \vee, \wedge in

$$
\mathcal{L}=\mathcal{L}(G)=\mathbf{L}(G) / \sim .
$$

\mathcal{L} is the structure lattice of G; greatest and least elements [G] and [1] $=\{1\}$. It's a Boolean lattice:
$a \vee\left(b_{1} \wedge b_{2}\right)=\left(a \vee b_{1}\right) \wedge\left(a \vee b_{2}\right), \ldots$, has complements

Characterization of branch groups

Assume G Boolean. Let
$\Gamma(G)=\{[B] \in \mathcal{L} \mid B$ a precomp. $\}$.
Conjugation induces an action of G on $\Gamma(G)$; faithful if
(Branch1) $\cap\left(N_{G}(B) \mid B\right.$ a precomponent in $\left.\mathcal{L}\right)=1$.
Now assume also
(Branch2) For each precomponent $A \neq 1$ in \mathcal{L} the normal closure of
$\cap\left(\mathrm{N}_{G}(B) \mid B\right.$ non-triv. precomp. in $\left.\mathcal{L}, A \cap B=1\right)$
has fin. index in G.
Then $\Gamma(G)$ has subtrees on which G acts as a branch group.
Conversely, branch groups on T satisfy these conditions and T embeds G-equivariantly in $\Gamma(G)$.

Interpretations: an example

K a field witn $|K|>2$, let T the mult. group $K \backslash\{0\}$.

$$
G=\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & t
\end{array}\right) \right\rvert\, x \in K, t \in T\right\}
$$

Write (x, t) for above matrix,
$A=\{(x, 1) \mid x \in K\} \cong K_{+}$and $H=\{(0, t) \mid t \in T\} \cong T$.
So $A \triangleleft G, G=A \rtimes H . \quad$ Fix $e=(1,1) \in A$ and $f=(0, \lambda) \in H \backslash\{1\}$.
$A=\left\{k \mid(\forall g)\left[k, k^{g}\right]=1\right\}$ definable in G,
$H=\left\{g \mid g^{f}=g\right\}=\mathrm{C}_{G}(f)$ definable (with parameters e, f).
For a, b in A define
$a+b=a b$,
$a * b=\left\{\begin{array}{ll}1 & \text { if } a \text { or } b=1 \\ a^{g} & \text { if not, where } b=e^{g}\end{array}\right.$ with $g \in G$.
A becomes a field isomorphic to K.
The set A and the operations on A are definable in G. An interpretation (with parameter e) of the field K in the group G.

Structure graph

Branch groups G can have branch actions on essentially different maximal trees. These actions are encoded in the structure graph $\Gamma(G)$:

- vertices the classes $[B] \in \mathcal{L}(G)$ containing a precomp. B;
- join $\left[B_{1}\right],\left[B_{2}\right]$ by an edge if $\left[B_{1}\right] \leqslant\left[B_{2}\right]$ or $\left[B_{2}\right] \leqslant\left[B_{1}\right]$, and \nexists intermediate classes in the ordering inherited from $\mathcal{L}(G)$.

Conjugation in G induces an action on $\mathcal{L}(G)$ and $\Gamma(G)$.
The tree on which G acts embeds equivariantly in the structure graph; often the embedding is an equivariant IM of trees.

In this case G 'knows' its tree: we can find the tree 'within' G.

New description of structure graph

$C_{G}^{2}(Y)$ for $C_{G}\left(C_{G}(Y)\right)$, etc. So $Y \subseteq C_{G}^{2}(Y), C_{G}^{3}(Y)=C_{G}(Y)$. $H \in \mathbf{L}(G)$ is C^{2}-closed if $H=\mathrm{C}_{G}^{2}(H)$.
(E) Let G be a branch group.
(a) If $H_{1}, H_{2} \in \mathbf{L}(G)$ have same centralizer then $C_{G}^{2}\left(H_{1}\right)=C_{G}^{2}\left(H_{2}\right)$.
(b) B a precomp. $\Rightarrow C_{G}^{2}(B)$ a precomp.
(c) $B_{1}<B_{2}$ precomps., C^{2}-closed $\Rightarrow \mathrm{N}_{G}\left(B_{1}\right)<\mathrm{N}_{G}\left(B_{2}\right)$.

The graph $\mathcal{B}(G)$ has

- vertices the non-trivial C^{2}-closed precomps.,
- edge between vertices if one a maximal proper C^{2}-closed precomp. in the other.
G acts on $\mathcal{B}(G)$ by conjugation.
(F) G branch, on tree T, and v a vertex. Then

$$
\mathrm{C}_{G}^{2}\left(\operatorname{rst}_{G}(v)\right)=\operatorname{rst}_{G}(v), \text { so } \operatorname{rst}(v) \in \mathcal{B}(G) .
$$

Proof. Clearly $\operatorname{rst}_{G}(v) \leqslant C_{G}^{2}\left(\operatorname{rst}_{G}(v)\right)$. Let $h \in C_{G}^{2}(\operatorname{rst}(v))$. Must prove h fixes every vertex $\notin T_{v}$, follows if h fixes every such u of level \geqslant level of v. We have $\operatorname{rst}_{G}(u) \leqslant C\left(\operatorname{rst}_{G}(v)\right)$, so h centralizes $\operatorname{rst}_{G}(u)$. Thus $\operatorname{rst}_{G}(u)=\left(\operatorname{rst}_{G}(u)\right)^{h}=\operatorname{rst}_{G}(u h)$, and so $u h=u$.
Theorem (JSW, 2015). G branch, acting on T.
(a) $B \mapsto[B]$ is a G-equivariant $\mathrm{IM} \mathcal{B}(G) \rightarrow \Gamma(G)$.
(b) $v \mapsto \operatorname{rst}_{G}(v)$ is a G-equivt. order-preserving injective map $T \rightarrow \mathcal{B}(G)$.

Properties of $\mathcal{B}=\mathcal{B}(G)$ for branch G :

- G is the only vertex fixed in the G-action on \mathcal{B}
- the orbit $O(B)$ of each vertex B is finite
- each vertex B is connected to vertex G by a finite path; all simple such paths have length $\leqslant \log _{2}(|O(B)|)$
- $\forall B \in \mathcal{B} \exists$ branch action for which B is the restricted stabilizer of a vertex
- if \mathcal{B} is a tree then G acts on it as a branch group.

Questions about $\mathcal{B}=\mathcal{B}(G)$

- finite valency?
- can there be exactly \aleph_{0} maximal trees?

Now G is a branch group.
Recall
$X_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}$,

$$
W_{h}=\bigcup\left\{X_{h g} \mid g \in G,\left[X_{h}, X_{h s}\right] \neq 1\right\} .
$$

$\beta(x): \beta(h)$ iff $C_{G}^{2}\left(W_{h}\right)$ commutes with its distinct conjugates

Key Proposition. $\forall B \in \mathcal{B}(G), \exists h \in G$ with $B=C_{G}^{2}\left(W_{h}\right)$.
Proof uses (among other things) the result of Hardy, Abért: branch groups satisfy no group laws. In particular, if $u \in T$ then $\exists x, y \in \operatorname{rst}_{G}(u)$ with $(x y)^{2} \neq y^{2} x^{2}$.

Interpretation in branch groups

Theorem (JSW, 2015). There are first-order formulae $\tau, \beta(x), \varepsilon(x, y)$ s.t. the following holds for each branch group G :
(a) G has a branch action on a unique maximal tree up to G-equivariant IM iff $G \models \tau$;
(b) $S=\{x \mid \beta(x)\}$ is a union of conj. classes, so G acts on it by conjugation;
(c) the relation on S defined by $\varepsilon(x, y)$ is a G-invariant preorder. So $Q=S / \sim$, where \sim is the equiv. relation defined by $\delta(x, y) \wedge \delta(y, x)$, is a poset on which G acts;
(d) Q is G-equivariantly isom. as poset to structure graph $\mathcal{L}(G)$.

When G has a branch action on a unique maximal tree T, this represents T as quotient of a definable subset of G modulo a definable equivalence relation. A parameter-free interpretation for T, and for the action on T.

