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Definition. A subgroup H of a group G is a precomponent if H
commutes with its distinct conjugates.
Then (H®) = (H8 | g € G} is the central product of the conjugates.

Examples: normal subgroups, subgroups of nilpotent groups of class 2,
groups H with H/(H N Z(G)) non-abelian simple.

They arise often:

e components in finite groups,
(precomponents H with H/(H N Z(G)) simple and H perfect)
e the ‘natural’ direct summands of base groups of wreath products
e restricted stabilizers for group actions on rooted trees
e restricted stabilizers for actions on other sets, e.g. totally ordered sets

Aim: unified approach to precomponents via first-order group theory.
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Let H < G.

H* ~ HY if 3n,3xp = x, x2, ..., xp = y with [HX-1, HX] # 1 for all i.
P = (H* | H* ~ H} is the unique smallest precomp. containing H.
Notation: CZ(X) = C¢(Cg(X)).

Let P be a precomponent.

P<(P*|x€ G)<G. Also PaC%(P):

x € C%(P) = x centralizes Cg(P)
= x normalises all P& # P = x € Ng(P).

When does the obvious graph have (uniformly) bounded diameter?
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First-order sentences/formulae

(VxVyVz)([x,y,z] = 1) G nilp. of class < 2 Yes!
(Vx € G")(Vz)([x,z] = 1) G nilp. of class < 2 No!

(Vx1VxaVx3Vxa ) (3y1, y2)([x1, x2][x3, xa] = [y1, y2])
every element of G’ is a commutator

(Va¥xedy)(y # xi Ay # x2) 1G] =3

(VX1VX2VX3\V/X4)(\/1<,-<J<4 xi=x) |G| <3

V) (x0=1—x=1) no elements of order 2,3

gt=1ng>#1 g has order 4

(Vk # 1)(Vg)(3r € N)3xw, ... x)(g = k1k2 .. k) No!
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Classes of finite groups defined by a sentence

(1) {groups of order < n}, {groups of order > n}, {groups with no
elements of order n}, nilpotent groups of class < 2.

(2) Felgner’s Theorem (1990). 3 sentence o (in the f.-o. language of
group theory) such that, for G finite, G |= 0 < G is non-abelian simple.

o = o1 A\ 03 with

o1 (VxVy)(x # 1A Ca(x,y) # {1} = Nges (Calx,¥)Ca(Ca(x, ¥)))E = {1}),
op: ‘each element is a product of kg commutators’ for a fixed kg € N.

(3) Finite soluble groups:

They are characterized (among finite groups) by ‘no g # 1 is a prod. of
commutators [g", gX]'; that is, p, holds Vn

pn: (V8Yx1 .. Vxp¥y1 .. . Vyn)(g =1V g # [g7,8"]...[g7, 8"]).

Theorem (JSW 2005). Finite G is soluble iff it satisfies psg.
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Quasisimple groups

G is quasisimple if G perfect and G/Z(G) simple

Proposition (JSW 2017). Finite G is quasisimple iff Q satisfies
QS1 A QS2 A QSs:

QS;: each element is a product of two commutators;

QSz: (Yx)(Yu)[x,x"] € Z(G) — x € Z(G);

QS3Z
(Vx¥y)(x ¢ Z(G)ACa(x,y) > Z(G)) = Ngea(Calx, y)CE(x, ¥))E = Z(G).
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Definable sets

sets of elements g € G (or in G(" = G x --- x G) defined by
first-order formulae, possibly with parameters from G.

Examples: e Z(G), defined by (Vy)([x,y| = 1)
e C(h), defined by [x, h] =1
e Centralizers of definable sets are definable:
Say S = {s | ¢(s)}; then Cc(S) = {t | Vg(p(g) — [g,t] = 1)}

The (soluble) radical R(G) of a finite group G is the largest soluble normal
subgroup of G.

Theorem (JSW 2008). There's a f.-o. formula r(x) such that if G is
finite and g € G then g € R(G) iff r(g) holds in G.
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|
The sets X, W,

Xp = {[h_l,hg] ‘ g c G}, Wy, = U{th ‘ g c G, [Xh,th] 75 1}.

e1(h,x): By)(x= [h’l, 1) (defines Xp)
@a(h,x): (3tIy1Ty2)(w1(h, y1) A pr(ht, y2) Api(hf,x) A [ya, y2] # 1)
(d eflnes Wh)

w3(h,x): (Yy)(p2(hy) = [x,y] =1) Co(Wh)
v(h,x): (Vy)(os(hy) = [x,y] = 1) CH(Wh)

e ()t e (h, hy) iff C(Wi,) < CG(Wh,)
{(hl, h2) | e ( 1, h2)} definable in G x G; leads to a definable equiv.

relation
e 3 B3(x): B(h) iff CZ(Wp) commutes with its distinct conjugates.
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G finite: component = quasisimple subgroup @ that commutes with its
distinct G-conjugates (< Q subnormal).

Theorem (JSW 2017). 3 f.o. formulae 7(h,y), 7'(h), w.(h), 7},(h) such
that for every finite G, the products of components of G are the sets

{x | w(h,x)} for the h € G satisfying 7’(h).

The components: the sets {x | m(h, x)} for which 7/(h) holds.

The non-ab. min. normal subgps.: {x | 7(h, x)} with 7/ (h).
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Define d, for r > 1 recursively by 61(x1, x2) = [x1, x2] and
5,(X1, N ,er) = [5,71(X1, Ce ,X2r71), 5r71(X2r71+1, e ,Xgr)] for r > 1.

v(h,x): (Vy)(#3(h,y) = [x,y] = 1) Ce(Wh)
al(h,x): @y 3yie)(( A2y (b yn)) Ax = da(y1,- -, y16))
Sa-value in CZ (W)

a(h,x):  (3y1dy2)(t(h,y1) Aat(h,y1) Ax = y1ys)

Let G be finite, Q a component. If h € Q\ Z(Q) then Q@ = (W), so
Q < CH(Wh).
Show Q = set of prods. of 2 ds-values in CZ (W), so Q = {x | a(h, x)}.
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Automorphism groups of ordered sets

Write Autp(2) for the group of order AMs of a totally ordered set Q.

Theorem (Andrew Glass and JSW, 2017). Suppose that Autp(2) acts
transitively on Q.

(a) If Autp(Q2), Auto(R) satisfy the same first-order sentences then

Q = R (as ordered set).

(b) If Autp(R2), Autp(Q) satisfy the same first-order sentences then
Q=2Qor Q=R\Q.

Same conclusion by Gurevich and Holland (1981) with the stronger
hypothesis that Autp(£2) acts transitively on pairs («, 5) with a < S.

Transitivity is necessary. Let Q =R x {0, 1} with alphabetic order:
(rl,)\l) < (rg,/\z) if rn <rnrnor if rn=r and A\1 < Ao
Then Autpo(R x {0,1}) = Autp(R).
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Let Q2 be totally ordered.
For f,g € Autp(Q2) define f vV g, f A g € Autp(Q2) by

a(f V g) = max{af,ag}, of Ag)=min{af,ag} forall ac Q.

An ¢-permutation group on  is a subgroup G < Autp(R) closed for Vv, A.
Let G be a trans. £-perm. group on €. A convex set A C Q is an o-block
if either Ag = A or AgN A = () for each g € G.

Stabilizer and rigid stabilizer of o-block A are defined by

Stab(A) :={ge€ G| Ag=A}, rst(A):={g € G |supp(g) C A},

G is o-primitive if A o-blocks apart from Q and singletons.
G is 0-2 transitive if transitive on all (a1, a2) € Q x Q with a1 < ap.
o-2-transitivity = o-primitivity.

‘McCleary’s Trichotomy’. Transitive f.d. o-primitive /-permutation
groups are o-2 transitive or right regular representations of subgroups of R.
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Technicalities

Lemma. Let G be 0-2 transitive on Q and g, h € G with
supp(h) Nsupp(h8) =0 and h # 1. Then 3 f, k € G such that

[h=Y, hf][h™8, h¥] £ [h™8, he¥][h L, hf].

For g € G and each union A of convex g-invariant subsets of €, let
dep(g, \) be the element of Autp(£2) that agrees with g on A and with
the identity elsewhere. Say G fully depressible (f.d.) on Q if dep(g,\) € G
for all g € G and all such A C Q.

Autp(Q) is fully depressible.
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Let G be a f.d. transitive {-perm. group on 2.
Write B(«, 3) for the smallest o-block containing both a, 8 € Q.

Let T = {B(a, 8) | a £ A},
Assume Stab(A) acts on A as a non-abelian group for all A € T.

Recall that
Xp:={[h""hE] | g € G} and Wj=|J{Xw|g€ G, [Xn Xns]#1}.
For Ae T, let

Qa = {h e rst(A) | (B € Q)(B(ah,a)) = A}.

As G transitive and f.d., Qa # 0. Since (rst(A))8 = rst(Ag) commutes
with rst(A) for g ¢ Stab(A), we have

Xp Crst(A) and W), Crst(A) forall Ae T and h e Qa.
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Proposition 1. Let A € T and h € Qa.

(a) W), = U{th | g < Stab(A)}

(b) Cg(Wh) is the pointwise stabilizer of A.

(c) CZ(W,) = rst(A). In particular, CZ(W,) is independent of h € Qa:

Corollary. G is o-primitive on Q iff CZ(W,) = G for all g € G \ {1}.
So if (G1,£1), (G2,£2) are transitive f.d. /-groups that satisfy the same
f.-o. sentences, and Gj is o-primitive, then so is Go.

Proof of the Theorem. Let A =R or A = Q, let Autp(2), Autp(A) satisfy
same f.-o. sentences. Enough to prove Autp(2) o-2-transitive.

Auto(A) is o-2-transitive on A, so o-primitive, non-abelian. So Autp() is
non-abelian and o-primitive by Corollary. Now use McCleary's trichotomy.

(Proof shows that if G < Autp(2) transitive and f.d. then Q = A))
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The rooted tree of type (2,3,2,3,...)

- < root vertex

. second
[ & layer

the tree with root u
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The rooted tree of type (2,3,2,3,...)

oV < root vertex

second
o A [} » layer
I [} ’ | N U R
< the tree with root u

Let G act faithfully on T fixing v.

Second layer L; is a union of G-orbits

rstg(u) — elements moving only vertices in T,

rstg(2) = (rstg(w) | w € 2nd layer), the dir. product.
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Fix (mp)n=0, a sequence of integers m, > 2.

The rooted tree T of type (m,) has a root vertex vp of valency mg. Each
vertex of distance n > 1 from vy has valency m, + 1.

nth layer L,: all vertices u at distance n from vp.

So m, edges descend from each u € L,,.

For a vertex u, the subtree with root uis T,,.

Let G act faithfully on T.
rstg(u) = {g | g fixes each vertex outside T,}.
rstg(n) = (rstg(u) | u € Ly).
G acts as a branch group on T if for each n,
e G acts transitively on L,
e rstg(n) has finite index in G.
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Definition. G is Boolean if G # 1 and
e G/K is vA (virtually abelian) whenever 1 < K < G;
e G has no non-trivial vA normal subgroups.

Branch groups are Boolean.

John Wilson June 27, 2018 19/1



Structure lattice

Assume G is Boolean.
L(G) ={H < G| |G : Ng(H)| finite} — a lattice of subgroups of G.

(A) Let H,K € L(G). Then HN K = 1 iff [H, K] = 1.
(B) If H € L(G) then 3U </ G with
(H,Ce(H)) = H x Cg(H) > U".

Write Hy ~ Hy iff Cg(H1) = Cg(H2). An equiv. reln. on L(G).

(C) The lattice operations in L(G) induce well-defined join and meet
operations V, A in

L=L(6) =L(G)/~.

L is the structure lattice of G; greatest and least elements [G] and
[1] = {1}. It's a Boolean lattice:
aV (b1 Aby)=(aVbi)A(aV bp), ..., has complements
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N
Characterization of branch groups

Assume G Boolean. Let

M(G) ={[B] € L | B a precomp. }.

Conjugation induces an action of G on '(G); faithful if
(Branchl) ((Ng(B)|B a precomponent in £) = 1.

Now assume also

(Branch2) For each precomponent A # 1 in £ the normal closure of
(N(Ng(B) | B non-triv. precomp. in £, AN B =1)
has fin. index in G.

Then '(G) has subtrees on which G acts as a branch group.
Conversely, branch groups on T satisfy these conditions and T embeds
G-equivariantly in T'(G).
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Interpretations: an example

K a field witn |K| > 2, let T the mult. group K \ {0}.

G:{(l X> IxeK,te T}.
0t

Write (x, t) for above matrix,

A={(x,1) | xe K} =Ky and H={(0,t) | te T} = T.

SoAqG, G=AxH. Fixe=(l,1)€Aand f=(0,)\) e H\ {1}.
A= {k | (Yg) [k, k&] = 1} definable in G,

H = {g | g’ = g} = C¢(f) definable (with parameters e, f).

For a, b in A define

a-+ b= ab,

1 ifaorb=1
axb=
a8 if not, where b = €8 with g € G.

A becomes a field isomorphic to K.
The set A and the operations on A are definable in G. An interpretation
(with parameter €) of the field K in the group G.
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Structure graph

Branch groups G can have branch actions on essentially different maximal
trees. These actions are encoded in the structure graph [(G):

e vertices the classes [B] € L(G) containing a precomp. B;
e join [Bi], [Bz] by an edge if [B1] < [Bz] or [Bz] < [Bi], and
A intermediate classes in the ordering inherited from £(G).

Conjugation in G induces an action on £(G) and I'(G).

The tree on which G acts embeds equivariantly in the structure graph;
often the embedding is an equivariant IM of trees.

In this case G ‘knows’ its tree: we can find the tree ‘within’ G.
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New description of structure graph

C2(Y) for C6(Cg(Y)), etc. So Y C C%(Y), CL(Y) = Cg(Y).

H € L(G) is C*-closed if H = C%(H).

(E) Let G be a branch group.

(a) If H1, H> € L(G) have same centralizer then C%(H,) = CZ(H,).
(b) B a precomp. = C%(B) a precomp.

(c) By < By precomps., C?-closed = Ng(B1) < Ng(Bo).

The graph B(G) has

e vertices the non-trivial C?-closed precomps.,

e edge between vertices if one a maximal proper C2-closed precomp.
in the other.

G acts on B(G) by conjugation.
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(F) G branch, on tree T, and v a vertex. Then
CZ(rstg(v)) = rstg(v), so rst(v) € B(G).

Proof. Clearly rstg(v) < C%(rstg(v)). Let h € C%(rst(v)). Must prove h
fixes every vertex ¢ T, follows if h fixes every such u of level > level of v.
We have rstg(u) < C(rstg(v)), so h centralizes rstg(u). Thus

rstg(u) = (rstg(u))" = rstg(uh), and so uh = u.

Theorem (JSW, 2015). G branch, acting on T.

(a) B+ [B]is a G-equivariant IM B(G) — I'(G).

(b) v = rstg(v) is a G-equivt. order-preserving injective map T — B(G).
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Properties of B = B(G) for branch G:

G is the only vertex fixed in the G-action on B

the orbit O(B) of each vertex B is finite

each vertex B is connected to vertex G by a finite path; all simple

such paths have length < log,(|O(B)|)

e V B € B d branch action for which B is the restricted stabilizer of a
vertex

e if Bis a tree then G acts on it as a branch group.

Questions about B = B(G)
e finite valency?
e can there be exactly g maximal trees?
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Now G is a branch group.

Recall
Xy ={[h"1,h¥] | g € G},
Wi = U{Xhe | g € G, [Xh, Xhe] # 1}.
B(x): B(h) iff CZ(Wj) commutes with its distinct conjugates

Key Proposition. VB € B(G), 3 h € G with B = CZ(W,).

Proof uses (among other things) the result of Hardy, Abért: branch groups
satisfy no group laws. In particular, if v € T then 3 x,y € rstg(u) with

(xy)? # y*x2.
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Interpretation in branch groups

Theorem (JSW, 2015). There are first-order formulae 7, 5(x), e(x,y)
s.t. the following holds for each branch group G:

(a) G has a branch action on a unique maximal tree up to G-equivariant
IM iff G =7,

(b) S ={x|p(x)} is a union of conj. classes, so G acts on it by
conjugation;

(c) the relation on S defined by ¢(x,y) is a G-invariant preorder. So
Q = S/~, where ~ is the equiv. relation defined by d(x,y) A d(y, x),
is a poset on which G acts;

(d) Q is G-equivariantly isom. as poset to structure graph £(G).

When G has a branch action on a unique maximal tree T, this represents
T as quotient of a definable subset of G modulo a definable equivalence
relation. A parameter-free interpretation for T, and for the action on T.
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