Branch groups and their trees, and ordered sets

John Wilson

jsw13@cam.ac.uk; John.Wilson@maths.ox.ac.uk; wilson@math.uni-leipzig.de

Düsseldorf, 26 June 2018

Definition. A subgroup H of a group G is a precomponent if H commutes with its distinct conjugates.

Then $\langle H^G \rangle = \langle H^g \mid g \in G \}$ is the central product of the conjugates.

Examples: normal subgroups, subgroups of nilpotent groups of class 2, groups H with $H/(H \cap Z(G))$ non-abelian simple.

They arise often:

• components in finite groups,

(precomponents H with $H/(H \cap Z(G))$ simple and H perfect)

- the 'natural' direct summands of base groups of wreath products
- restricted stabilizers for group actions on rooted trees
- restricted stabilizers for actions on other sets, e.g. totally ordered sets

Aim: unified approach to precomponents via first-order group theory.

Let $H \leq G$. $H^{x} \sim H^{y}$ if $\exists n, \exists x_{0} = x, x_{2}, ..., x_{n} = y$ with $[H^{x_{i-1}}, H^{x_{i}}] \neq 1$ for all *i*. $P = \langle H^{x} | H^{x} \sim H \rangle$ is the unique smallest precomp. containing *H*. Notation: $C_{G}^{2}(X) = C_{G}(C_{G}(X))$. Let *P* be a precomponent. $P \triangleleft \langle P^{x} | x \in G \rangle \triangleleft G$. Also $P \triangleleft C_{G}^{2}(P)$:

$$x \in C^2_G(P) \Rightarrow x \text{ centralizes } C_G(P)$$

$$\Rightarrow x \text{ normalises all } P^g \neq P \Rightarrow x \in N_G(P).$$

When does the obvious graph have (uniformly) bounded diameter?

First-order sentences/formulae

$$\begin{array}{ll} (\forall x \forall y \forall z)([x, y, z] = 1) & G \text{ nilp. of class} \leqslant 2 & \text{Yes!} \\ (\forall x \in G')(\forall z)([x, z] = 1) & G \text{ nilp. of class} \leqslant 2 & \text{No!} \\ (\forall x_1 \forall x_2 \forall x_3 \forall x_4)(\exists y_1, y_2)([x_1, x_2][x_3, x_4] = [y_1, y_2]) & \text{every element of } G' \text{ is a commutator} \\ (\forall x_1 \forall x_2 \exists y)(y \neq x_1 \land y \neq x_2) & |G| \geqslant 3 \\ (\forall x_1 \forall x_2 \forall x_3 \forall x_4)(\bigvee_{1 \leqslant i < j \leqslant 4} x_i = x_j) & |G| \leqslant 3 \\ (\forall x)(x^6 = 1 \rightarrow x = 1) & \text{no elements of order } 2, 3 \\ g^4 = 1 \land g^2 \neq 1 & g \text{ has order } 4 \\ (\forall k \neq 1)(\forall g)(\exists r \in \mathbb{N})(\exists x_1, \dots, x_r)(g = k^{x_1}k^{x_2}\dots k^{x_r}) & \text{No!} \end{array}$$

Classes of finite groups defined by a sentence

(1) {groups of order $\leq n$ }, {groups of order $\geq n$ }, {groups with no elements of order n}, nilpotent groups of class ≤ 2 .

(2) **Feigner's Theorem (1990).** \exists sentence σ (in the f.-o. language of group theory) such that, for *G* finite, $G \models \sigma \Leftrightarrow G$ is non-abelian simple. $\sigma = \sigma_1 \land \sigma_2$ with

 $\sigma_1: (\forall x \forall y)(x \neq 1 \land C_G(x, y) \neq \{1\} \rightarrow \bigcap_{g \in G} (C_G(x, y)C_G(C_G(x, y)))^g = \{1\}),$ $\sigma_2: \text{ 'each element is a product of } \kappa_0 \text{ commutators' for a fixed } \kappa_0 \in \mathbb{N}.$

(3) Finite soluble groups:

They are characterized (among finite groups) by 'no $g \neq 1$ is a prod. of commutators $[g^h, g^k]$ '; that is, ρ_n holds $\forall n$

 $\rho_n \colon (\forall g \forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n) (g = 1 \lor g \neq [g^{x_1}, g^{y_1}] \ldots [g^{x_n}, g^{y_n}]).$

Theorem (JSW 2005). Finite G is soluble iff it satisfies ρ_{56} .

G is quasisimple if G perfect and G/Z(G) simple

Proposition (JSW 2017). Finite *G* is quasisimple iff *Q* satisfies $QS_1 \wedge QS_2 \wedge QS_3$:

QS₁: each element is a product of two commutators; QS₂: $(\forall x)(\forall u)[x, x^u] \in Z(G) \rightarrow x \in Z(G);$ QS₃: $(\forall x \forall y)(x \notin Z(G) \land C_G(x, y) > Z(G)) \rightarrow \bigcap_{g \in G} (C_G(x, y)C_G^2(x, y))^g = Z(G).$

Definable sets

... sets of elements $g \in G$ (or in $G^{(n)} = G \times \cdots \times G$) defined by first-order formulae, possibly with parameters from G.

Examples: • Z(G), defined by $(\forall y)([x, y] = 1)$

- $C_G(h)$, defined by [x, h] = 1
- Centralizers of definable sets are definable:

Say $S = \{s \mid \varphi(s)\}$; then $C_G(S) = \{t \mid \forall g(\varphi(g) \rightarrow [g, t] = 1)\}$

The (soluble) radical R(G) of a finite group G is the largest soluble normal subgroup of G.

Theorem (JSW 2008). There's a f.-o. formula r(x) such that if G is finite and $g \in G$ then $g \in R(G)$ iff r(g) holds in G.

The sets X_h , W_h

• $X_h = \{ [h^{-1}, h^g] \mid g \in G \}, \quad W_h = \bigcup \{ X_{h^g} \mid g \in G, [X_h, X_{h^g}] \neq 1 \}.$

$$\begin{aligned} \varphi_1(h,x) &: \quad (\exists y)(x = [h^{-1}, h^y]) & (\text{defines } X_h) \\ \varphi_2(h,x) &: \quad (\exists t \exists y_1 \exists y_2)(\varphi_1(h, y_1) \land \varphi_1(h^t, y_2) \land \varphi_1(h^t, x) \land [y_1, y_2] \neq 1) \\ \varphi_3(h,x) &: \quad (\forall y)(\varphi_2(h, y) \to [x, y] = 1) & C_G(W_h) \end{aligned}$$

$$\gamma(h,x): \quad (\forall y)(\phi_3(h,y) \to [x,y] = 1) \qquad \qquad \mathsf{C}^2_G(\mathcal{W}_h)$$

- $\varepsilon_{\leq}(x, y)$: $\varepsilon_{\leq}(h_1, h_2)$ iff $C_G^2(W_{h_1}) \leq C_G^2(W_{h_2})$ { $(h_1, h_2) | \varepsilon_{\leq}(h_1, h_2)$ } definable in $G \times G$; leads to a definable equiv. relation
- $\exists \beta(x)$: $\beta(h)$ iff $C_G^2(W_h)$ commutes with its distinct conjugates.

G finite: component = quasisimple subgroup *Q* that commutes with its distinct *G*-conjugates ($\Leftrightarrow Q$ subnormal).

Theorem (JSW 2017). \exists f.o. formulae $\pi(h, y)$, $\pi'(h)$, $\pi'_{c}(h)$, $\pi'_{m}(h)$ such that for every finite *G*, the products of components of *G* are the sets $\{x \mid \pi(h, x)\}$ for the $h \in G$ satisfying $\pi'(h)$.

The components: the sets $\{x \mid \pi(h, x)\}$ for which $\pi'_{c}(h)$ holds. The non-ab. min. normal subgps.: $\{x \mid \pi(h, x)\}$ with $\pi'_{m}(h)$. Define δ_r for $r \ge 1$ recursively by $\delta_1(x_1, x_2) = [x_1, x_2]$ and $\delta_r(x_1, \dots, x_{2^r}) = [\delta_{r-1}(x_1, \dots, x_{2^{r-1}}), \delta_{r-1}(x_{2^{r-1}+1}, \dots, x_{2^r})]$ for r > 1.

$$\begin{split} \gamma(h,x): & (\forall y)(\phi_3(h,y) \to [x,y] = 1) & \mathsf{C}^2_G(W_h) \\ \alpha^1(h,x): & (\exists y_1 \dots \exists y_{16})((\bigwedge_{n=1}^{16} \gamma(h,y_n)) \land x = \delta_4(y_1,\dots,y_{16})) \\ & \delta_4\text{-value in } \mathsf{C}^2_G(W_h) \\ \alpha(h,x): & (\exists y_1 \exists y_2)(\alpha^1(h,y_1) \land \alpha^1(h,y_1) \land x = y_1y_2) \end{split}$$

Let G be finite, Q a component. If $h \in Q \setminus Z(Q)$ then $Q = \langle W_h \rangle$, so $Q \leq C_G^2(W_h)$. Show Q = set of prods. of 2 δ_4 -values in $C_G^2(W_h)$, so $Q = \{x \mid \alpha(h, x)\}$.

Automorphism groups of ordered sets

Write $\operatorname{Aut}_{O}(\Omega)$ for the group of order AMs of a totally ordered set Ω .

Theorem (Andrew Glass and JSW, 2017). Suppose that $Aut_O(\Omega)$ acts transitively on Ω .

(a) If $\operatorname{Aut}_O(\Omega)$, $\operatorname{Aut}_O(\mathbb{R})$ satisfy the same first-order sentences then $\Omega \cong \mathbb{R}$ (as ordered set).

(b) If $Aut_O(\Omega)$, $Aut_O(\mathbb{Q})$ satisfy the same first-order sentences then $\Omega \cong \mathbb{Q}$ or $\Omega \cong \mathbb{R} \setminus \mathbb{Q}$.

Same conclusion by Gurevich and Holland (1981) with the stronger hypothesis that $\operatorname{Aut}_{\mathcal{O}}(\Omega)$ acts transitively on pairs (α, β) with $\alpha < \beta$.

Transitivity is necessary. Let $\Omega = \mathbb{R} \times \{0, 1\}$ with alphabetic order: $(r_1, \lambda_1) < (r_2, \lambda_2)$ if $r_1 < r_2$ or if $r_1 = r_2$ and $\lambda_1 < \lambda_2$. Then $\operatorname{Aut}_O(\mathbb{R} \times \{0, 1\}) \cong \operatorname{Aut}_O(\mathbb{R})$. Let Ω be totally ordered.

For $f,g \in \operatorname{Aut}_O(\Omega)$ define $f \lor g$, $f \land g \in \operatorname{Aut}_O(\Omega)$ by

 $\alpha(f \lor g) = \max\{\alpha f, \alpha g\}, \quad \alpha(f \land g) = \min\{\alpha f, \alpha g\} \quad \text{for all } \alpha \in \Omega.$

An ℓ -permutation group on Ω is a subgroup $G \leq \operatorname{Aut}_O(\Omega)$ closed for \vee, \wedge . Let G be a trans. ℓ -perm. group on Ω . A convex set $\Delta \subseteq \Omega$ is an o-block if either $\Delta g = \Delta$ or $\Delta g \cap \Delta = \emptyset$ for each $g \in G$. Stabilizer and rigid stabilizer of o-block Δ are defined by

$$\mathsf{Stab}(\Delta) := \{g \in G \mid \Delta g = \Delta\}, \quad \mathsf{rst}(\Delta) := \{g \in G \mid \mathsf{supp}(g) \subseteq \Delta\},$$

G is o-primitive if $\not\exists$ o-blocks apart from Ω and singletons. *G* is o-2 transitive if transitive on all $(\alpha_1, \alpha_2) \in \Omega \times \Omega$ with $\alpha_1 < \alpha_2$. o-2-transitivity \implies o-primitivity.

'McCleary's Trichotomy'. Transitive f.d. o-primitive ℓ -permutation groups are o-2 transitive or right regular representations of subgroups of \mathbb{R} .

Technicalities

Lemma. Let G be o-2 transitive on Ω and $g, h \in G$ with $supp(h) \cap supp(h^g) = \emptyset$ and $h \neq 1$. Then $\exists f, k \in G$ such that

$$[h^{-1}, h^{f}][h^{-g}, h^{gk}] \neq [h^{-g}, h^{gk}][h^{-1}, h^{f}].$$

For $g \in G$ and each union Λ of convex g-invariant subsets of Ω , let dep (g, Λ) be the element of Aut_O (Ω) that agrees with g on Λ and with the identity elsewhere. Say G fully depressible (f.d.) on Ω if dep $(g, \Lambda) \in G$ for all $g \in G$ and all such $\Lambda \subseteq \Omega$. Aut_O (Ω) is fully depressible. Let G be a f.d. transitive ℓ -perm. group on Ω . Write $B(\alpha, \beta)$ for the smallest o-block containing both $\alpha, \beta \in \Omega$. Let $T = \{B(\alpha, \beta) \mid \alpha \neq \beta\}$. Assume Stab(Δ) acts on Δ as a non-abelian group for all $\Delta \in T$. Recall that

$$X_h := \{[h^{-1}, h^g] \mid g \in G\}$$
 and $W_h = \bigcup \{X_{h^g} \mid g \in G, \ [X_h, X_{h^g}] \neq 1\}.$
For $\Delta \in T$, let

$$Q_{\Delta} = \{h \in \mathsf{rst}(\Delta) \mid (\exists \alpha \in \Omega)(B(\alpha h, \alpha)) = \Delta\}.$$

As G transitive and f.d., $Q_{\Delta} \neq \emptyset$. Since $(rst(\Delta))^g = rst(\Delta g)$ commutes with $rst(\Delta)$ for $g \notin Stab(\Delta)$, we have

$$X_h \subseteq \mathsf{rst}(\Delta)$$
 and $W_h \subseteq \mathsf{rst}(\Delta)$ for all $\Delta \in \mathcal{T}$ and $h \in Q_\Delta$

Proposition 1. Let $\Delta \in T$ and $h \in Q_{\Delta}$.

(a)
$$W_h = \bigcup \{ X_{h^g} \mid g \in \mathsf{Stab}(\Delta) \}.$$

- (b) $C_G(W_h)$ is the pointwise stabilizer of Δ .
- (c) $C^2_G(W_h) = rst(\Delta)$. In particular, $C^2_G(W_h)$ is independent of $h \in Q_\Delta$:

Corollary. *G* is o-primitive on Ω iff $C_G^2(W_g) = G$ for all $g \in G \setminus \{1\}$. So if (G_1, Ω_1) , (G_2, Ω_2) are transitive f.d. ℓ -groups that satisfy the same f.-o. sentences, and G_1 is o-primitive, then so is G_2 .

Proof of the Theorem. Let $\Lambda = \mathbb{R}$ or $\Lambda = \mathbb{Q}$, let $\operatorname{Aut}_O(\Omega)$, $\operatorname{Aut}_O(\Lambda)$ satisfy same f.-o. sentences. Enough to prove $\operatorname{Aut}_O(\Omega)$ o-2-transitive. $\operatorname{Aut}_O(\Lambda)$ is o-2-transitive on Λ , so o-primitive, non-abelian. So $\operatorname{Aut}_O(\Omega)$ is non-abelian and o-primitive by Corollary. Now use McCleary's trichotomy.

(Proof shows that if $G \leq \operatorname{Aut}_O(\Omega)$ transitive and f.d. then $\Omega \cong \Lambda$.)

Fix $(m_n)_{n \ge 0}$, a sequence of integers $m_n \ge 2$.

The *rooted tree* T of type (m_n) has a root vertex v_0 of valency m_0 . Each vertex of distance $n \ge 1$ from v_0 has valency $m_n + 1$. *n*th layer L_n : all vertices u at distance n from v_0 . So m_n edges descend from each $u \in L_n$. For a vertex u, the subtree with root u is T_u .

Let G act faithfully on T. $\operatorname{rst}_G(u) = \{g \mid g \text{ fixes each vertex outside } T_u\}.$ $\operatorname{rst}_G(n) = \langle \operatorname{rst}_G(u) \mid u \in L_n \rangle.$

G acts as a branch group on T if for each n,

- G acts transitively on L_n ,
- $rst_G(n)$ has finite index in G.

Definition. G is Boolean if $G \neq 1$ and

- G/K is vA (virtually abelian) whenever $1 < K \leq G$;
- G has no non-trivial vA normal subgroups.

Branch groups are Boolean.

Structure lattice

Assume G is Boolean.

 $\mathbf{L}(G) = \{H \leq G \mid |G : N_G(H)| \text{ finite}\} - \text{ a lattice of subgroups of } G.$

(A) Let
$$H, K \in L(G)$$
. Then $H \cap K = 1$ iff $[H, K] = 1$.
(B) If $H \in L(G)$ then $\exists U \leq_f G$ with
 $\langle H, C_G(H) \rangle = H \times C_G(H) \ge U'$.

Write $H_1 \sim H_2$ iff $C_G(H_1) = C_G(H_2)$. An equiv. reln. on L(G).

(C) The lattice operations in L(G) induce well-defined join and meet operations \lor , \land in

 $\mathcal{L} = \mathcal{L}(G) = \mathbf{L}(G)/\sim.$

 \mathcal{L} is the structure lattice of G; greatest and least elements [G] and $[1] = \{1\}$. It's a Boolean lattice: $a \lor (b_1 \land b_2) = (a \lor b_1) \land (a \lor b_2), \ldots$, has complements

Characterization of branch groups

Assume *G* Boolean. Let $\Gamma(G) = \{ [B] \in \mathcal{L} \mid B \text{ a precomp.} \}.$

Conjugation induces an action of G on $\Gamma(G)$; faithful if

(Branch1) $\bigcap (N_G(B) | B \text{ a precomponent in } \mathcal{L}) = 1.$

Now assume also

(Branch2) For each precomponent $A \neq 1$ in \mathcal{L} the normal closure of $\bigcap(N_G(B) \mid B \text{ non-triv. precomp. in } \mathcal{L}, A \cap B = 1)$ has fin. index in G.

Then $\Gamma(G)$ has subtrees on which G acts as a branch group. Conversely, branch groups on T satisfy these conditions and T embeds G-equivariantly in $\Gamma(G)$.

Interpretations: an example

K a field with |K| > 2, let T the mult. group $K \setminus \{0\}$.

$$G = \left\{ egin{pmatrix} 1 & x \ 0 & t \end{pmatrix} \mid x \in K, t \in T
ight\}.$$

Write (x, t) for above matrix, $A = \{(x, 1) \mid x \in K\} \cong K_+ \text{ and } H = \{(0, t) \mid t \in T\} \cong T.$ So $A \triangleleft G$, $G = A \rtimes H$. Fix $e = (1, 1) \in A$ and $f = (0, \lambda) \in H \setminus \{1\}$. $A = \{k \mid (\forall g) [k, k^g] = 1\}$ definable in G, $H = \{g \mid g^f = g\} = C_G(f)$ definable (with parameters e, f). For a, b in A define a + b = ab. $a * b = \begin{cases} 1 & \text{if } a \text{ or } b = 1 \\ a^g & \text{if not, where } b = e^g \text{ with } g \in G. \end{cases}$ A becomes a field isomorphic to K. The set A and the operations on A are definable in G. An interpretation (with parameter e) of the field K in the group G.

Branch groups G can have branch actions on essentially different maximal trees. These actions are encoded in the structure graph $\Gamma(G)$:

- vertices the classes $[B] \in \mathcal{L}(G)$ containing a precomp. B;
- join [B₁], [B₂] by an edge if [B₁] ≤ [B₂] or [B₂] ≤ [B₁], and *A* intermediate classes in the ordering inherited from *L*(*G*).

Conjugation in G induces an action on $\mathcal{L}(G)$ and $\Gamma(G)$.

The tree on which G acts embeds equivariantly in the structure graph; often the embedding is an equivariant IM of trees.

In this case G 'knows' its tree: we can find the tree 'within' G.

New description of structure graph

 $C_G^2(Y)$ for $C_G(C_G(Y))$, etc. So $Y \subseteq C_G^2(Y)$, $C_G^3(Y) = C_G(Y)$. $H \in L(G)$ is \mathbb{C}^2 -closed if $H = C_G^2(H)$.

(E) Let G be a branch group.

(a) If H_1 , $H_2 \in \mathbf{L}(G)$ have same centralizer then $C_G^2(H_1) = C_G^2(H_2)$.

(b) B a precomp.
$$\Rightarrow C^2_G(B)$$
 a precomp.

(c) $B_1 < B_2$ precomps., C²-closed $\Rightarrow N_G(B_1) < N_G(B_2)$.

The graph $\mathcal{B}(G)$ has

- vertices the non-trivial C²-closed precomps.,
- edge between vertices if one a maximal proper C²-closed precomp. in the other.
- G acts on $\mathcal{B}(G)$ by conjugation.

(**r**) G branch, on thee *r*, and *v* a vertex. Then

$$C_G^2(\operatorname{rst}_G(v)) = \operatorname{rst}_G(v)$$
, so $\operatorname{rst}(v) \in \mathcal{B}(G)$.
Proof. Clearly $\operatorname{rst}_G(v) \leq C_G^2(\operatorname{rst}_G(v))$. Let $h \in C_G^2(\operatorname{rst}(v))$. Must prove *h*
fixes every vertex $\notin T_v$, follows if *h* fixes every such *u* of level \geq level of *v*.
We have $\operatorname{rst}_G(u) \leq \operatorname{C}(\operatorname{rst}_G(v))$, so *h* centralizes $\operatorname{rst}_G(u)$. Thus
 $\operatorname{rst}_G(u) = (\operatorname{rst}_G(u))^h = \operatorname{rst}_G(uh)$, and so $uh = u$.
Theorem (JSW, 2015). *G* branch, acting on *T*.

(a) $B \mapsto [B]$ is a *G*-equivariant IM $\mathcal{B}(G) \to \Gamma(G)$.

(E) C branch on tree T and μ a vertex. Then

(b) $v \mapsto \operatorname{rst}_G(v)$ is a *G*-equivt. order-preserving injective map $T \to \mathcal{B}(G)$.

Properties of $\mathcal{B} = \mathcal{B}(G)$ **for branch** G:

- G is the only vertex fixed in the G-action on $\mathcal B$
- the orbit O(B) of each vertex B is finite
- each vertex B is connected to vertex G by a finite path; all simple such paths have length ≤ log₂(|O(B)|)
- ∀ B ∈ B ∃ branch action for which B is the restricted stabilizer of a vertex
- if \mathcal{B} is a tree then G acts on it as a branch group.

Questions about $\mathcal{B} = \mathcal{B}(G)$

- finite valency?
- can there be exactly \aleph_0 maximal trees?

Now G is a branch group.

Recall

$$X_h = \{[h^{-1}, h^g] \mid g \in G\},\$$

 $W_h = \bigcup \{X_{h^g} \mid g \in G, [X_h, X_{h^g}] \neq 1\}.$
 $\beta(x): \beta(h) \text{ iff } C^2_G(W_h) \text{ commutes with its distinct conjugates}$

Key Proposition. $\forall B \in \mathcal{B}(G), \exists h \in G \text{ with } B = C_G^2(W_h).$

Proof uses (among other things) the result of Hardy, Abért: branch groups satisfy no group laws. In particular, if $u \in T$ then $\exists x, y \in rst_G(u)$ with $(xy)^2 \neq y^2x^2$.

Interpretation in branch groups

Theorem (JSW, 2015). There are first-order formulae τ , $\beta(x)$, $\varepsilon(x, y)$ s.t. the following holds for each branch group G:

- (a) G has a branch action on a unique maximal tree up to G-equivariant IM iff $G \models \tau$;
- (b) $S = \{x \mid \beta(x)\}$ is a union of conj. classes, so G acts on it by conjugation;
- (c) the relation on S defined by $\varepsilon(x, y)$ is a G-invariant preorder. So $Q = S/\sim$, where \sim is the equiv. relation defined by $\delta(x, y) \wedge \delta(y, x)$, is a poset on which G acts;

(d) Q is *G*-equivariantly isom. as poset to structure graph $\mathcal{L}(G)$. When *G* has a branch action on a unique maximal tree *T*, this represents *T* as quotient of a definable subset of *G* modulo a definable equivalence relation. A parameter-free interpretation for *T*, and for the action on *T*.