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Introduction

This diploma thesis grew out of three seminars about geometric and differential topology
the author attended at Göttingen University in the years 2007 and 2008.

The first was concerned with the h–cobordism theorem due to Stephen Smale. As
an important application it implies the equivalence of the notions diffeomorphic and h–
cobordant for a certain class of manifolds. This class comprises simply connected closed
manifolds of dimension greater than four. In particular, the problem of classifying
manifolds homeomorphic to the n–dimensional sphere Sn is restated as a classification
problem up to h–cobordism for n > 4. Albeit technical, the property h–cobordism has
got the advantage of being easier traceable. A possibly even more recognised appli-
cation of the h–cobordism theorem is a proof of the generalised Poincaré conjecture
in dimensions n > 4. It states that any homotopy n–sphere is homeomorphic to the
standard sphere Sn.

The second seminar was then a work–through of Michel Kervaire’s and John Milnor’s
seminal paper “Groups of homotopy spheres I”, [KerMil63]. It shows (at that time
excluding the case n = 3) that there are only finitely many homotopy n–spheres up to
h–cobordism. In other words and provided that n > 4, there are only finitely many
pairwise non–diffeomorphic manifolds homeomorphic to Sn. In still other words, there
are only finitely many distinct exotic spheres of dimension greater than four. Somewhat
unsatisfactory, but implied by the very nature of the purpose of the paper, no example
of an exotic sphere is constructed in it.

The third seminar filled this gap. It was based on Milnor’s book “Singular Points
of Complex Hypersurfaces”, [Mil68], which carries out the construction of a certain
fibre bundle associated with an isolated singularity of a complex algebraic variety. It
turns out that the boundary of a small neighbourhood of such a singularity can be an
exotic sphere. For the proof, however, which involves computing such invariants as the
intersection form or the Arf invariant of a coboundary Milnor refers the reader to the
relevant literature.

Now in the first part of this diploma thesis we will finally recall a proof of existence of
exotic spheres. We put the task in the more general context of classifying total spaces of
S3–bundles over S4 up to homeomorphism, PL–homeomorphism and diffeomorphism.
This is precisely the class of manifolds Milnor examined in 1956 to give the first examples
of exotic spheres. Partial results of the classification appeared sporadically ever since
Milnor’s discovery proved that there is interest in the theory. The classification was
finally completed by D. C. Crowley and C. Escher in 2003, [CrEs03]. We follow their
paper, filling in some details a research article must leave out, in an attempt to present
some kind of exposition on the subject. As expected the classification shows that also
those manifolds among the total spaces which are not homeomorphic to S7 admit various
“exotic” differentiable structures.
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The second part comes back to algebraic geometry, the other classical area of math-
ematics exotic spheres are encountered in. As the preceding classification of sphere
bundles suggests, one might expect a similar situation for singularity boundaries of
algebraic varieties. They should as well provide examples of homeomorphic and non–
diffeomorphic manifolds even if they are not topological spheres. As a starting point,
one could reconsider the two criteria Milnor has applied to decide whether a given sin-
gularity boundary is a topological sphere. These are determinants of certain integer
matrices arising from different contexts. They both take unit values whenever the man-
ifold in question is homeomorphic to the sphere. We will prove that these determinants
coincide (up to sign) in general. It is thus natural to assume that they should still be
useful when examining singularity boundaries which are not topological spheres.

Throughout this diploma thesis smooth will mean differentiable of class C∞. Map-
pings and maps of topological spaces are meant to be continuous. Manifolds, with
or without boundary, are to be smooth and compact unless otherwise stated. Num-
bers without brackets refer to sections, theorems or other numbered units. Numbers
in round brackets refer to equations. Finally, a token in square brackets refers to the
bibliography.

I am indebted to my supervisor Professor Thomas Schick for extensive mentoring and
to my parents for support all along difficult studies.

Göttingen, April 2009

Holger Kammeyer (kammeyer@math.uni-goettingen.de)
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1 Classification of 3–sphere bundles over the
4–sphere

In this chapter we want to present the classification of S3–bundles over S4 up to home-
omorphism, PL–homeomorphism and diffeomorphism. We will see that a variety of
exotic 7–manifolds occur in this fashion. The outline is as follows. In section 1.1 we
will recall a classical result due to Feldbau reducing the classification up to fibre bundle
equivalence to the computation of π3(SO4) = π3(O4). The part of the classification
that can directly be deduced from elementary bundle theory will also be included in
this section. An overview of the strategy for the general classification of the bundles
is given in section 1.2. We will take a closer look on the relevant invariants and their
values for our sphere bundles in section 1.3. Finally, section 1.4 concludes with some
curiosities that can be found along the way.

1.1 The classifying homotopy group

We want to classify fibre bundles with fibre S3, base S4 and structure group SO4. Our
starting point is the following result (see [St44] or [St51], p. 99).

1.1 Theorem. The equivalence classes of bundles over Sn with structure group G and
fibre F are in 1–1 correspondence with equivalence classes of elements of πn−1(G) under
the operations of π0(G).

Here are some explanations.

• Two bundles ξ and ξ′ are called equivalent if they have the same base space,
fibre and group and if there is a bundle map ξ → ξ′ (in the sense of [St51], p. 9)
inducing the identity map of the common base space.

• The notation π0(G) = G/Ge with Ge denoting the component of the unit element
e in G is understood.

• Any g ∈ G representing a class in π0(G) operates on G as an inner automorphism
thus inducing an automorphism of each homotopy group πn(G). A curve gt from
g0 to g1 in G gives a homotopy (g, t) 7→ gtgg

−1
t leaving e fixed. Hence we have a

well–defined action π0(G) y πn(G) for each n.

The construction as it stands is entirely topological. However, setting n = 4, G =
SO4 and F = R4, any resulting four dimensional vector bundle ζ : E(ζ) → S4 is
naturally equipped with a smooth bundle structure which is unique up to smooth bundle
equivalence, see e. g. [DeSa68], p. 232. Since ζ has got SO4 as structure group, we may
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1 Classification of 3–sphere bundles over the 4–sphere

assume a Euclidean metric is fixed. The smooth bundle charts can then be chosen to
be fibrewise isometries. Thus the natural smooth structure on the total space E(ζ)
induces a smooth structure on its submanifold of unit vectors M . The effective action
of SO4 on S3 is given by the restriction of its action on R4. Therefore M is precisely
the total space of the sphere bundle ξ : E(ξ) = M → S4 obtained by replacing the fibre
R4 by F = S3. Now given any two topologically equivalent vector bundles ζ and ζ ′

we also have a smooth bundle equivalence by approximation when the natural smooth
structures are assigned. Moreover, we may assume that it restricts to isometries on
fibres. From this follows uniqueness of the smooth structure on the manifold M up to
diffeomorphism.

By the same line of arguments the total space of the disc bundle η : W → S4 obtained
by replacing the fibre R4 by the Euclidean 4–disc F = D4 is a smooth fibre bundle. Its
total space W is a smooth manifold with boundary M .

As π1(S
4) = 0, any of our vector bundles ζ is orientable. Both S4 and R4 carry a

canonical orientation. The choice of SO4 as structure group thus implies that a vector
bundle ζ : E(ζ) → S4 comes along with a canonically preferred orientation. This in-
duces an orientation on W and thus on the boundary M . The choice of SO4 as structure
group for the bundles ξ and η also ensures that the induced orientations of the fibres
are preserved under equivalence. Similarly, the fact that we require bundle equivalences
to induce the identity of the base space (and not a degree −1 homeomorphism) guar-
antees that the induced orientation of the base is preserved under equivalence. We will
comment later on the question which bundles merely differ by these orientation issues.

Since π0(SO4) is trivial, the bundles are in 1–1 correspondence with elements of
π3(SO4). It will be convenient to have an explicit description of this group.

Consider R4 as the quaternionic skew field H. Then S3 is the subgroup of unit
quaternions and an identity element 1 ∈ S3 is distinguished. We can define Lie group
homomorphisms ρ, σ : S3 → SO4 via quaternionic multiplication

ρ(u) v = u v u−1 and σ(u) v = u v .

These are clearly linear in v and indeed orthogonal since the norm preserves quaternionic
products. They are rotations as there is a curve joining u with 1 in S3.

Embed R3 i
↪→ H as the hyperplane with zero real part in the obvious way. Then we

can define a Lie group homomorphism % : S3 → SO3 by restricting

%(q) = i∗ρ(q) .

This homomorphism actually maps to SO3, for %(q) is R·1–invariant and R·1 is orthogonal
to R3 ⊂ H. Thus it is also R3–invariant.

1.2 Lemma. The triple % : S3 → SO3 carries the structure of a smooth (principal)
bundle which is isomorphic to the canonical twofold cover S3 → RP3 of real projective
three–space.

Proof. Pure imaginary quaternions only commute with pure real ones. Hence % has
kernel {1,−1} and cosets {q,−q}. It thus suffices to show that % is surjective. But it
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1 Classification of 3–sphere bundles over the 4–sphere

is a well–known fact that a rotation of v ∈ R3 by the angle ϕ around the axis spanned
by u ∈ S2 can be represented as %(cos

(ϕ
2

)
1 + sin

(ϕ
2

)
u) v. 2

Lifting any ϕ ∈ SO3 by % to ±q ∈ S3 yields a well–defined inclusion ρ̃ : SO3 ⊂ SO4 as
subgroup by sending ϕ to ρ(q). In particular, this defines a smooth action γ : SO3 y S3.
Finally, the homomorphism σ is mono and provides an embedding S3 ⊂ SO4 as normal
subgroup.

1.3 Theorem. The four–dimensional rotation group SO4 factorises into a semidirect
product SO3 γnS3 of topological groups.

Proof. For any rotation φ ∈ SO4 there are unit quaternions qL, qR ∈ S3 such that
φ(v) = qL v qR for each v ∈ H and these are unique up to simultaneous change of sign.
A proof of this by pure matrix computations has recently been given in [Me05]. We
compute

φ(v) = qL v qR = (±q−1R ) (qR qL v) (±qR) ,

i. e. φ = ρ(±q−1R )σ(qRqL) and thus ρ̃(SO3)σ(S3) = SO4. Since ρ(q) = σ(±p) if and only
if q vq−1 = p v for any v, we may set v = 1 to see that p = 1 and in turn q = ±1. This
implies ρ̃(SO3) ∩ σ(S3) = { idH }, completing the algebraic part of the theorem.

Now the isomorphism (±p, q) 7→ ρ(±p)σ(q) is a continuous bijection of compact
Hausdorff spaces. Thus it is a homeomorphism. 2

With the help of the following basic result from homotopy theory the structure of the
classifying homotopy group will be evident. For simplicity now and in the remainder
we do not want to distinguish between mappings from the sphere Sn → X and their
homotopy classes in πn(X) in our notation.

1.4 Lemma. Let (G, e, ·) be a topological group and let ϕ,ψ be any mappings Sn → G.
Then the pointwise product ϕ · ψ is homotopic to the sum ϕ+ ψ in πn(G).

Proof. Denote by ε : Sn → G the constant map x 7→ e. Then clearly ϕ + ε ' ϕ and
ε+ ψ ' ψ. The sum ϕ+ ε maps to e in the second half of the cube [0, 1]n while ε+ ψ
maps to e in the first half of the cube. We thus have

ϕ · ψ ' (ϕ+ ε) · (ε+ ψ) = ϕ+ ψ .

2

A nice consequence for the n–th quaternionic power is the following

1.5 Corollary. The mapping S3 → S3, u 7→ un has degree n.

Proof. The common method of summing up local degrees of some finite preimage might
be difficult in view of the fact that for instance u2 + 1 = 0 has all of S2 = R3 ∩ S3 ⊆ H
as solutions. But by the Hurewicz theorem we can compute the degree in homotopy
where the assertion is immediate from lemma 1.4. 2
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1 Classification of 3–sphere bundles over the 4–sphere

1.6 Theorem. The group π3(SO4) is free abelian with generators ρ and σ.

Proof. We apply the π3–functor to theorem 1.3 to obtain

π3(SO4) ∼= π3(SO3)⊕ π3(S3) .

By Lemma 1.2 % induces an isomorphism π3(S
3)
∼→ π3(SO3) in the exact homotopy

sequence. Thus the generator idS3 ∈ π3(S3) is mapped to the generator % ∈ π3(SO3)
and the isomorphism of 1.3 carries m%⊕ n idS3 over to ρmσn = mρ+ nσ ∈ π3(SO4) by
lemma 1.4. 2

Now let the pair of integers (m,n) determine the classes

ζm,n : Em,n → S4, ηm,n : Wm,n → S4 and ξm,n : Mm,n → S4

of R4, D4 and S3–bundles corresponding to mρ+nσ ∈ π3(SO4). As a first step towards
the classification of the total spaces Mm,n, we will discuss how the integers m and n
transform when the orientations of fibre and base are reversed.

If we enlarge the structure group SO4 to O4, bundle equivalences may reverse the in-
duced orientation of the fibre. Recall that a bundle map consists of fibre automorphisms
which can be described as the action of elements of the structure group. An equivalence
reverses the orientation of the fibres if and only if these elements lie in the reflection
component of O4. In this case, the classifying homotopy classes in π3(O4) ∼= π3(SO4)
are conjugate under the nontrivial element α ∈ π0(O4) ∼= Z2, see theorem 1.1.

1.7 Lemma. The action of α ∈ π0(O4) on π3(SO4) is given by

α(mρ+ nσ) = (m+ n)ρ− nσ .

Proof. Represent α by quaternionic conjugation r ∈ O4 which has determinant −1.
Then α acts trivially on R3 ⊂ H and thus trivially on SO3 ⊂ SO4. So also on homotopy
level we have α(ρ) = ρ.

On the other hand, we compute for p ∈ S3 and q ∈ H

(r σ(p) r−1)q = r(p r(q)) = qr(p) = q p−1 = p p−1q p−1 = ρ(p)(p−1q) = ρ(p)σ(p)−1q ,

i. e. α(σ) = ρσ−1. By lemma 1.4 we may conclude α(σ) = ρ−σ on homotopy level. 2

We have thus proven that for any m,n the manifolds Mm,n and Mm+n,−n are (orien-
tation reversing) diffeomorphic.

Allowing the fibre transformations to be reflections gave rise to equivalences reversing
the orientation of the fibres. Likewise, allowing bundle equivalences to induce base
mappings homotopic to reflections will yield equivalences reversing the orientation of
the base.

1.8 Definition. Two bundles ξ and ξ′ are called weakly equivalent if they have the
same base space, fibre and group and if there is a bundle map ξ → ξ′ inducing a
homeomorphism of the common base space.
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1 Classification of 3–sphere bundles over the 4–sphere

1.9 Lemma. Let ξ, ξ′ be two bundles over Sn with fibre F , group G and π0(G)–
conjugacy classes τ, τ ′ in πn−1(G). Then ξ and ξ′ are weakly equivalent if and only
if τ ′ = ±τ .

Sketch of proof. A weak equivalence induces a deg±1–mapping of Sn. If the degree is
+1, the mapping is homotopic to the identity and the corresponding covering homotopy
ends in a map ξ → ξ′ inducing the identity on Sn, so in this case τ = τ ′. If the degree is
−1, the mapping is homotopic to a reflection which, restricted to the equatorial Sn−1,
is a reflection of Sn−1. The corresponding covering homotopy ends in a map ξ → ξ′

inducing a reflection of Sn−1. From this it follows that τ ′ can be represented by an
element of τ with opposite sign.

Conversely, if τ = τ ′ then ξ and ξ′ are equivalent. If τ = −τ ′, choose a reflection of
Sn which restricted to Sn−1 is a reflection as well. Then the pullback bundle of ξ with
respect to this reflection is weakly equivalent to ξ and has class −τ . 2

Again set n = 4, G = SO4 and F = S3. We have discussed below theorem 1.1 that
the total spaces E(ξ) and E(ξ′) are diffeomorphic if τ = τ ′. If τ = −τ ′, we pull back
ξ via a smooth reflection of S4 as above. This gives us a bundle whose total space is
clearly (orientation reversing) diffeomorphic to E(ξ) and which has class −τ .

We thus have that for any m,n the manifolds Mm,n and M−m,−n are (orientation
reversing) diffeomorphic. In particular, we may assume n ≥ 0 in the remainder. Com-
bining the orientation reversions of fibre and base shows that Mm,n and M−m−n,n are
(orientation preserving) diffeomorphic.

Before proceeding to our general classification pattern, we will take care of the
case n = 0. We have a well–defined generator α ∈ H4(Wm,n) which restricts to
the orientation class ι ∈ H4(S4). Let β ∈ H4(Mm,n) be given by the restriction i∗α
where i : Mm,n → Wm,n is the inclusion of the boundary. Since H5(Wm,n,Mm,n) ∼=
H3(Wm,n) ∼= 0 by Lefschetz duality, the exact cohomology sequence implies that i∗ is
surjective. So β generates H4(Mm,n). Unless otherwise stated, integer coefficients are
to be understood.

1.10 Lemma. The cohomology group H4(Mm,0) is infinite cyclic generated by β.

Proof. The bundles ξm,0 have structure group reducible to SO3 fixing a zero–sphere
in each fibre. Thus any bundle ξm,0 possesses a cross–section and we may conclude
π3(Mm,0) = π3(S

3) ⊕ π3(S4) ∼= π3(S
3) ∼= Z and π1(Mm,0) = π2(Mm,0) = 0. By the

Hurewicz theorem H3(Mm,0) ∼= Z. By Poincaré duality H4(Mm,0) ∼= Z, too. 2

1.11 Lemma. The first Pontrjagin class p1(Wm,n) ∈ H4(Wm,n) is given by

p1(Wm,n) = 2(n+ 2m)α .

Proof. The tangent bundle of Wm,n splits as a Whitney sum of the subbundle tangent
and the subbundle normal to the fibre. The first bundle is the pullback of the vector
bundle ζm,n under the projection Wm,n → S4. According to lemma 3 of [Mil56a], the
bundle ζm,n has first Pontrjagin class p1(ζm,n) = 2(n+ 2m) ι. The second bundle is the
pullback of the tangent bundle of S4 which has first Pontrjagin class p1(S

4) = 0. 2
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1 Classification of 3–sphere bundles over the 4–sphere

For any smooth submanifold X of any smooth manifold Y let τ(X) and ν(X) denote
the tangent bundle and the normal bundle of X in Y respectively.

1.12 Corollary. The first Pontrjagin class p1(Mm,0) ∈ H4(Mm,0) is given by

p1(Mm,0) = 4mβ .

Proof. The collar neighbourhood theorem states precisely that the normal bundle of a
boundary is trivial. We thus have

p1(Mm,0) = p1(τ(Mm,0)⊕ ν(Mm,0)) = p1(i
∗τ(Wm,0)) = i∗p1(Wm,0) = 4mβ .

2

1.13 Corollary. The manifolds Mm,0 and Mm′,0 are homeomorphic or diffeomorphic
if and only if m′ = ±m.

Proof. If m′ = ±m, then Mm,0 and Mm′,0 are diffeomorphic by lemma 1.9. On the other
hand, the rational Pontrjagin classes are a topological invariant of smooth manifolds as
proved by Novikov. So if m′ 6= ±m, then Mm,0 and Mm′,0 are not homeomorphic by
corollary 1.12. 2

This completes the discussion of the manifolds Mm,0. We will assume n > 0 in what
follows.

1.2 Methods of the total space classification

In order to have a rough idea of the homotopy type of the manifolds Mm,n, we first of
all compute their cohomology rings. This will primarily be a matter of the following
lemma.

1.14 Lemma. The vector bundle ζm,n has got Euler class e(ζm,n) = n ι ∈ H4(S4).

Proof. The differentiable structure of the total space Em,n of the bundle ζm,n can be
made precise by the following construction. Form the disjoint union

R4 × R4 ∐ R4 × R4

and write (u, v)1 for elements in the left hand and (u′, v′)2 for elements in the right
hand component. Then identify points (u, v)1 ∼ (u′, v′)2 in R4 \ {0} ×R4 if and only if

u′ =
u

‖u‖2
and v′ = ρm( u

‖u‖)σ
n( u
‖u‖) v .

Now decompose the base S4 into the northern hemisphere S4
+ of points x ∈ S4 with

fifth coordinate x5 ≥ 0 and the southern hemisphere S4
− of points x ∈ S4 with fifth
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1 Classification of 3–sphere bundles over the 4–sphere

component x5 ≤ 0. Then points x ∈ S4
+, x

′ ∈ S4
− can be mapped to points u, u′ ∈ R4

in the plane via stereographic projection through the south and the north pole

u = 1
1+x5

(x1, x2, x3, x4) and u′ = 1
1−x′5

(x′1, x
′
2, x
′
3, x
′
4) .

We define a section s : S4 −→ Em,n via

x 7−→

(u, 1−x5
1+x5

1)1 if x ∈ S4
+

(u′, u′ n )2 if x ∈ S4
−

where again 1 ∈ H is the quaternion unit and the power u′ n is given by quaternionic
multiplication. Points in the equator x ∈ S3 = S4

+ ∩ S4
− are mapped to

s(x) = (u,1)1 = ((x1, x2, x3, x4),1)1 = (u′, ρm(u)σn(u)1)2 = (u′, u′ n)2 = s(x)

so the section is well–defined. The factor 1
‖u‖2 = 1−x5

1+x5
comes from the transition map

of the two charts of S4 and ensures that the section is smooth. We thus can compute
the Euler number of ζm,n by summing up the indices of the isolated zeros in the two
poles. In a neighbourhood of the north pole the vector field clearly is smoothly isotopic
to a nowhere zero one. So the index of this root is zero. In a neighbourhood of the
south pole the vector field is just given by taking the n–th quaternionic power u 7→ un.
This induces a degree n–mapping of S3 by corollary 1.5. So the index of this root, the
overall index and the Euler number of the bundle is n. 2

We will now see that the Euler class e(ζm,n) entirely determines the cohomology ring
of the associated manifold Mm,n.

1.15 Corollary. The nontrivial cohomology groups of Mm,n are

H0(Mm,n) ∼= H7(Mm,n) ∼= Z and H4(Mm,n) ∼= Zn .

Proof. These are the only finitely generated abelian groups that fit into the Gysin
sequence

. . . −→ H i(S4)
∪ e(ζm,n)−→ H i+4(S4) −→ H i+4(Mm,n) −→ H i+1(S4)

∪ e(ζm,n)−→ . . .

since by lemma 1.14 the cup product ∪ e(ζm,n) is multiplication by the integer n. 2

As an immediate consequence we have that Mm,n and Mm,n′ are not homeomorphic
if n 6= n′. So the classification problem is reduced to deciding whether Mm,n and Mm′,n

are diffeomorphic, PL–homeomorphic or homeomorphic. The integer m is not reflected
in the elementary algebraic topology of Mm,n.

We are thus faced with the problem of classifying a collection of (s−1)–connected (2s+
1)–manifolds. There is a general theory due to C. T. C. Wall (see [Wa67]) for all s except
s = 3, 7. Wall suggested the latter two cases as a problem for his student D. L. Wilkens
who essentially solved it in [Wi72]. We will comment later on the ambiguity Wilkens
left open. The methods of Wall and Wilkens are taken from the theory of surgery and
handlebodies. The invariants they introduce realise a classification of highly connected
manifolds up to the following concept.

12



1 Classification of 3–sphere bundles over the 4–sphere

1.16 Definition. Two n–manifolds M and N are called almost diffeomorphic if there
is a homeomorphism f : M −→ N and a homotopy sphere Σn such that

f : M −→ N#Σn

is a diffeomorphism.

One might hope that there is a convenient category, endowed with “forgetful” functors
from the smooth and into the topological category, which realises definition 1.16 as its
isomorphism notion. In the dimension we are interested in, this turns out to be true.

1.17 Theorem. Two closed 7–manifolds are almost diffeomorphic if and only if they
are PL–homeomorphic.

Proof. Any smooth manifold possesses a smooth triangulation or equivalently poly-
hedral structure which is unique up to combinatorial equivalence (see [Wh40]). The
construction is functorial in that the diffeomorphism f : M → N#Σ7 yields a PL–
homeomorphism fPL : M → N#Σ7. It remains to show that N = N# S7 and N#Σ7

are PL–homeomorphic. For this purpose we recall a classical lemma from differential
topology ([Mil56b], lemma A.3). It says that the manifold obtained by gluing together
two given manifolds M1, M2 by means of a diffeomorphism of their boundaries carries
a natural smooth structure. This structure is compatible with the canonical embed-
dings of M1 and M2 and is unique up to diffeomorphism. The proof carries over to the
analogous result in the PL–category (see [Mu61], theorem 10.4). Now choose a smooth

orientation preserving embedding i : D7 → N , set N0 = N \ i(D̊7
) and let j : S6 → D7 be

an orientation reversing embedding into the boundary. Let ϕ ∈ Diff+(S6) be an orienta-
tion preserving diffeomorphism that describes Σ7 ∈ Γ7 as a twisted sphere (see [Mil06]).
Then the manifolds N# S7 and N#Σ7 are given by the C∞–category pushouts

S6

i◦j

{{

j

##
N0

""

D7

||
N# S7

S6

i◦j

{{

j◦ϕ

##
N0

""

D7

||
N#Σ7 .

We know that π0(PL+(S6)) ∼= 0. For a PL–homeomorphism not PL–isotopic to the
identity gave rise to a non-standard PL–sphere by the PL twisted sphere construction.
But the Hauptvermutung is correct for Sn. So ϕ is PL–isotopic to the identity (though
not necessarily smoothly isotopic) and we have a PL–automorphism φ of S6×I which
restricts to the identity on S6×{0} and to ϕ on S6×{1}. Pasting a PL-manifold com-
binatorially equivalent to the 7-simplex onto the boundary component S6×{0} and
defining φ to map identically on the added cell we obtain a PL–automorphism φ ex-
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1 Classification of 3–sphere bundles over the 4–sphere

tending ϕ to all of D7. We thus have a diagram in the PL–category

S6

i◦j

xx
j◦
��

j◦ϕ

&&
N0

&&

D7

��

φ

∼
// D7

xx
N# S7 ∼= N#Σ7

where the left hand triangle and the outer square clearly give isomorphic pushouts.
For the converse general smoothing theory (compare [HiMa74], part II, theorem 5.3)

implies that a smooth structure on a PL-manifold M corresponds to a section in a
certain bundle E(M). This is induced from the universal bundle BO→ BPL with fibre
PL/O by the map M → BPL classifying its PL–structure. The obstruction to extending
such a section over the k–skeleton lies in the group

Hk(M ;πk−1(PL/O)) .

One can show that the bundle of coefficients is trivial. Moreover, it is a story on its own
to show that PL/O is 6–connected. The references can be found in [Ru01], IV.4.27(iv).
It follows that any closed 7–PL–manifold is smoothable. The differentiable structures
are in 1–1 correspondence with elements of π7(PL/O). Now Hirsch and Mazur have
proven also in [HiMa74] that πn(PL/O) is isomorphic to the group of smooth structures
on a PL–sphere Sn. By [Th58b], Théorème 9, a smooth manifold PL–isomorphic to the
sphere can be constructed as a twisted sphere. We thus have that π7(PL/O) ∼= Γ7. As a
consequence of the h–cobordism theorem (see [Mil65a]) we know that Γ7 is isomorphic
to the group Θ7 of homotopy 7–spheres. Milnor has computed this group as Θ7

∼= Z28

(see [KerMil63]). The µ–invariant we will define in definition 1.35 is additive with
respect to connected sum (lemma 1.36) and distinguishes all 28 homotopy 7–spheres
(theorem 1.40). This clearly proves the theorem. 2

We will now introduce the invariants the classification will rely on. These will essen-
tially be the torsion linking form and the obstruction to stable parallelisability.

For any topological space X let β : H∗(X;Q/Z) → H∗+1(X;Z) be the Bockstein
homomorphism associated with the short exact sequence

0 −→ Z i−→ Q j−→ Q/Z −→ 0 .

For any finitely generated abelian group G denote by TG its torsion subgroup.

1.18 Definition. Let X be a closed oriented n–manifold. Then for k = 0 , . . . , n − 1
the bilinear pairing

THk+1(X)⊗ THn−k(X) −→ Q/Z
x⊗ y 7−→ 〈x′, i∗(y ∩ [X])〉

14



1 Classification of 3–sphere bundles over the 4–sphere

with β(x′) = x will be called the kth linking pairing. If n is odd, the sole term linking

pairing will refer to the
(
n+1
2

)th
pairing.

Since x is a torsion element, it is in the image of β. If z ∈ kerβ = im j∗, then z = j∗z′

and 〈j∗z′, i∗y ∩ [X]〉 = 〈z′, j∗i∗(y ∩ [X])〉 = 0 , so the pairing is well–defined.
Let X be a 2–connected closed 7–manifold. Bott has computed π2(SO) ∼= 0 and

π3(SO) ∼= Z where SO denotes the direct limit of the natural inclusions SOn ↪→ SOn+1.
It follows that the stable tangent bundle τ s(X) restricted to the 3–skeleton is trivial
whereas the obstruction to stable triviality over the 4–skeleton is a well–defined element
β = β(X) of the group

H4(X;π3(SO)) ∼= H4(X) .

As πi(SO) ∼= 0 for i = 4, 5, 6, there is no other obstruction to stable parallelisability.

1.19 Lemma (Kervaire, [Ker59] lemma 1.1). The first Pontrjagin class p1(X) is twice
the obstruction class β.

We will see that this multiplication by two occurs universally. The cohomology of
the classifying spaces of the stable classical groups is well–known. In particular, both
H4(BSO) and H4(BSpin) are infinite cyclic.

1.20 Lemma. The canonical map BSpin
π→ BSO induces a homomorphism

π∗ : H4(BSO) −→ H4(BSpin)

which is multiplication by ±2.

Proof. The proof given here can be found in the original source [Ths62]. Since there it
is spread over the whole paper, we extract it here for the convenience of the reader. As
usual denote by p1 ∈ H4(BSO) the canonical generator. For any given space let ρn be
the natural cohomology homomorphism induced by the projection Z→ Zn. By problem
15-A of [MS74] we have ρ2(p1) = w 2

2 ∈ H4(BSO;Z2) with w2 denoting the universal
stable second Stiefel–Whitney class. From the long exact sequence of homotopy groups
for the classifying space fibration we have πn(BSpin) ∼= πn−1(Spin). So BSpin is 3–
connected because Spin is 2–connected. In particular, H2(BSpin;Z2) = 0. Thus

ρ2(π
∗p1) = (π∗w2)

2 = 0 .

It follows that there is a unique q1 ∈ H4(BSpin) such that π∗p1 = 2q1. We are done
when we have shown that ρ2(q1) = π∗w4 ∈ H4(BSpin;Z2). For then q1 is odd and since
all groups in the Serre cohomology spectral sequence of the fibration

K(Z2, 1) −→ BSpin −→ BSO

are either zero or sums of Zs and Z2s, the element q1 must be a generator.
Now Wu has shown that the Pontrjagin square

P2 : H2j(BSO;Z2) −→ H4j(BSO;Z4)

15



1 Classification of 3–sphere bundles over the 4–sphere

(see [Ths57]) evaluated on even Stiefel–Whitney classes takes the form

P2(w2j) = ρ4(pj) + θ
(
w4j +

∑
0<i<jw2iw4j−2i

)
where θ is induced from the nontrivial coefficient homomorphism Z2 → Z4. The original
proof is given in [Wu54] (in Chinese), a new proof can be found in [Ths60], p. 82 (in
English). Setting j = 1 and using naturality of Pontrjagin squares and of change of
coefficient homomorphisms we thus have

0 = P2(0) = P2(π
∗w2) = ρ4(π

∗p1) + θ(π∗w4) .

Because evidently 2ρ4 = θρ2, we may conclude

θ (ρ2(q1)− π∗w4) = 0 .

From this ρ2(q1) = π∗w4 follows since the group preceding the domain of θ in the
associated Bockstein sequence is H3(BSpin;Z2) ∼= 0. 2

Hence we can define a universal stable spin characteristic class as the generator of
H4(BSpin) that has got the same sign under the monomorphism of lemma 1.20 as
the first universal stable Pontrjagin class p1 ∈ H4(BSO). We give this stable spin
characteristic class the suggestive name p1

2 .
Since X is 2–connected, its second Stiefel-Whitney class vanishes trivially and thus

X is spin. This enables us to identify the obstruction class β(X) from a more abstract
point of view with the spin characteristic class p1

2 (X). The coincidence is ensured by
lemma 1.19 as long as H4(X) contains no two–torsion elements. It is stated (without
proof) in [CrEs03] and [Cr02] that the definitions are actually equivalent in general.

The following result will be crucial for the homeomorphism classification.

1.21 Theorem. The spin characteristic class is a topological invariant of spin mani-
folds.

Proof. We denote by BTopSpin (BPLSpin) the classifying space for topological spin
microbundles (PL vector bundles). For a smooth spin manifold X its topological spin
structure factorises as

BSpin

��
X

66

// BTopSpin .

So the theorem is clearly restated by claiming that in the corresponding diagram in
fourth cohomology

H4(BSpin)

xx
H4(X) H4(BTopSpin)

ϕ

OO

oo

16



1 Classification of 3–sphere bundles over the 4–sphere

the homomorphism ϕ is an isomorphism. To prove this consider the commutative prism

BSpin
tt

��

**
BPLSpin //

��

BTopSpin

��
BO

tt **
BPL // BTop .

This is constructed by choosing CW approximations for the lower triangle so that the
upper triangle is induced from it by the 4–connected covering construction which is
functorial. For the definition of n–connected coverings we adopt the convention of
Husemoller, [Hu08], chapter 12, section 6, p. 142, though it implies confusingly that
these 4–connected coverings are only 3–connected. The so obtained spaces occur on
the fourth level of the associated Whitehead towers or inverse Postnikov towers. Note
that uniqueness of Whitehead towers implies uniqueness of the above prism up to weak
homotopy equivalence.

Applying the π4–functor to the prism, we see directly by definition of the 4–connected
coverings that all vertical arrows become isomorphisms. Moreover, we have π4(BO) ∼=
π4(BPL) because BPL→ BO is a fibration with 7–connected fibre BPL/O (compare the
proof of theorem 1.17). The map BPL→ BTop lies in the Kirby–Siebenmann fibration

K(Z2, 3) −→ BPL −→ BTop

which reflects that the only obstruction to finding a PL–structure on a given topological
manifold lies in its fourth cohomology group. This yields the short exact sequence

0 −→ π4(BPL) −→ π4(BTop) −→ Z2 −→ 0 .

Substituting the above isomorphisms, this becomes

0 −→ π4(BSpin) −→ π4(BTopSpin) −→ Z2 −→ 0 .

Since we are now in the upper triangle, the Hurewicz theorem is available and we have

0 −→ H4(BSpin) −→ H4(BTopSpin) −→ Z2 −→ 0 .

According to [KrSt91], lemma 6.5, this sequence splits. Therefore we can apply the
Hom(−,Z)–functor and the universal coefficient theorem to obtain an isomorphism

H4(BTopSpin) −→ H4(BSpin) .

Naturality of the universal coefficient theorem ensures this isomorphism is just ϕ. 2

Combining 1.20 and 1.21, we have

1.22 Corollary. The first Pontrjagin class is a topological invariant of spin manifolds.

17



1 Classification of 3–sphere bundles over the 4–sphere

1.23 Prospects. A proof that 1.22 is correct without the assumption of an existing spin
structure has been announced by Kreck in 2004, see [KrLue05], p. 31. The author was unable
to locate such a paper.

It is well–known that the first Stiefel–Whitney class w1 is an obstruction to orientability
while the second Stiefel–Whitney class w2 is an obstruction to the existence of a spin structure.
Similarly, the invariant p1

2 is an obstruction to lifting the structure group Spin(n) to the non–
compact topological group String(n) which is only defined for n > 4. As a space this group is
given by the 7–connected cover of Spin(n).

Even though Grove and Ziller (see [GZ00]) showed that all manifolds Mm,n admit metrics
with non–negative sectional curvature it is not yet known whether any exotic 7–sphere Mm,1

admits a metric with positive sectional curvature. Since Mm,n is spin, its Â–genus can be
computed by means of the Atiyah-Singer index theorem. For this purpose we have to choose
a Riemannian metric and compute the index of the Dirac operator on its spinor bundle. The
Â-genus is known to be an obstruction to the existence of a metric with positive scalar curvature.

Now Husemoller (see [Hu08], p. 145) conjectures that similarly, the existence of a string
structure gives rise to spinors and Dirac operators on the free loop space of the manifold. The
index of the Dirac operator would be the Witten index which then might be an obstruction to
the existence of a metric with positive Ricci curvature.

Total spaces of S7–bundles over S8, for which similar arguments as those presented here
are possible, might provide interesting examples for the theory. For these bundles a complete
classification has not yet been carried out.

1.24 Definition. A Wilkens triple W = (G, b, g) consists of a finitely generated abelian
group G together with a non-singular symmetric bilinear map b : TG ⊗ TG −→ Q/Z
and an even element g ∈ G.

Given two Wilkens triples W1 = (G1, b1, g1) and W2 = (G2, b2, g2) we have a natural
sum W1 ⊕W2 = (G1

⊕
G2, b1 ⊕ b2, g1 ⊕ g2) where the direct sum of bilinear maps is

given by

b1 ⊕ b2 ((u1 ⊕ u2)⊗ (v1 ⊕ v2)) = b1(u1 ⊗ v1) + b2(u2 ⊗ v2) .

This sum operation is associative and an identity element is provided by the trivial triple
(0, 0, 0). The triples W1 and W2 are called isomorphic if there is a group isomorphism
ϕ : G1 → G2 such that b2 = b1 ◦ (ϕ ⊗ ϕ) and such that ϕ(g1) = g2. Clearly the sum
operation for triples is well–defined and commutative on the set of isomorphism classes.
In summary, the isomorphism classesW of Wilkens triples form a commutative monoid.

Similarly, the connected sum operation # establishes the structure of a commutative
monoid on the set P of orientation–preserving almost diffeomorphism classes of closed
2–connected 7–manifolds P where the identity element is represented by the standard
sphere S7.

1.25 Definition. The Wilkens map Φ : P −→ W is defined on representatives and
assigns to a manifold P the triple

(H4(P ), lk(P ), p1

2 (P ))

built from its fourth cohomology group, its linking pairing 1.18 and its spin characteristic
class p1

2 .

18



1 Classification of 3–sphere bundles over the 4–sphere

For the definition of Φ to be meaningful, it remains to verify

1.26 Lemma. If P is a manifold of class P, its spin characteristic class p1

2 (P ) is even.

Proof. The proof given here can be found in [GKS04], corollary 3.4, p. 413, without
references. We show equivalently that the mod 2–reduction of p1

2 (P ) in H4(P ;Z2)
is zero. This mod 2–reduction is given by the fourth Stiefel–Whitney class w4(P )
as has been shown universally by Thomas, [Ths62] 1.6, p. 58. Now recall that Wu
classes vi ∈ H i(P ) are well–defined by the formula vi ∪ x = Sqi(x) ∈ H7(P ) for
each x ∈ H7−i(P ). Here Sqi denotes the i–th Steenrod square. The total Wu class
v = 1 + v1 + v2 + . . . is related to the total Stiefel–Whitney class w = 1 +w1 +w2 + . . .
by the formula v ∪ w = 1. In particular, all Stiefel–Whitney classes vanish if and only
if all Wu classes do. For i > 3 we gather vi = 0 directly from the defining formula
as the Steenrod squares are zero in this range. Also v3 = 0 using the Adém relation
Sq3 = Sq1 Sq2. Finally v1 = v2 = 0 because P is 2–connected. 2

1.27 Theorem. The Wilkens map Φ: P −→W is an epimorphism of monoids.

Proof. The proof that Φ is a homomorphism requires essentially to show that the linking
pairing splits under connected sums. This is similar to the proof of lemma 1.36 below
where we will show that the intersection pairing of a manifold splits under connected
sum. Clearly Φ(Sn) = 0. The surjectivity statement is a proposition in section 2 of
[Wi72]. 2

By setting −W equal to (G,−b, g) and −P equal to P with reversed orientation we
have the formula Φ(−W ) = −Φ(W ). For if the orientation is reversed, the fundamental
class and thus the linking form changes sign while the Pontrjagin class remains un-
changed. Since no nontrivial element ofW has an inverse, the notation −W should not
lead to confusion.

1.28 Definition. A non–singular symmetric bilinear map TG ⊗ TG → Q/Z is called
irreducible if it is not the proper sum of two maps. A Wilkens triple W = (G, b, g) is
called indecomposable if G ∼= Z or G is finite and b is irreducible. A class P ∈ P is
called indecomposable if Φ(P ) is indecomposable. Denote by W ind and P ind the set of
classes of indecomposable triples and manifolds respectively.

1.29 Theorem (Wilkens, theorem 1 in [Wi72]). The monoid P is generated by P ind.

Thus the classification problem is reduced to indecomposable manifolds.

1.30 Theorem (Wall, [Wa63]). If b : G⊗G −→ Q/Z is a finite irreducible form, then
G ∼= Zpk for p prime or G ∼= Z2k ⊕ Z2k .

Recall that we have computed H4(Mm,n) ∼= Zn ∼=
⊕k

i=1 Zpεii with the prime decom-

position n =
∏k
i=1 p

εi
i . As there are no nontrivial homomorphisms of cyclic groups of

coprime order, any automorphism of H4(Mm,n) must preserve the above decomposi-
tion. So we are in the convenient situation that Φ(Mm,n) = Φ(Mm′,n) if and only if

19



1 Classification of 3–sphere bundles over the 4–sphere

the pairs of corresponding indecomposable Wilkens triples are isomorphic. Thus, if the
indecomposable triples classify, so does Φ(Mm,n).

We write P ind as the disjoint union P ind
1 ∪ P ind

2 of classes of manifolds with fourth
cohomology group isomorphic to

1. Z or Zpk , for p an odd prime and

2. Z2k or Z2k ⊕ Z2k .

Finally, we can state the first part of the Wilkens classification.

1.31 Theorem (Wilkens, theorem 2 (i) in [Wi72]). The restriction of the Wilkens map
Φ to the set P ind

1 is a bijection.

As has already been pointed out, the methods of proving the theorem are from surgery
theory. A classical reference is [Wa99]. The manifolds P ind

2 are not classified by the
Wilkens triple. It is a little awkward to state what can be said about these. We need
the further refinement P ind

2 = P ind
2a ∪ P ind

2b ∪ P ind
2c ∪ P ind

2d to classes of manifolds with
fourth cohomology group of order

a) at most four and p1

2 divisible by four,

b) at most four and p1

2 not divisible by four,

c) greater than four and p1

2 divisible by four and

d) greater than four and p1

2 not divisible by four.

1.32 Theorem (Wilkens, theorem 2 (ii) in [Wi72]). The restriction of the Wilkens map
Φ to the set P ind

2b ∪ P ind
2c is a bijection. The restriction to P ind

2a ∪ P ind
2d is two–to–one.

1.33 Remark. There are classification results analogous to those stated from 1.29 to
1.32 for 6–connected 15–manifolds (see [Wi72]).

In general surgery theory, ambiguities as those in cases a) and d) call for a quadratic
refinement of the linking form. But in dimensions 7 and 15 Wall’s definition of quadratic
refinement of the linking form does not work. This in turn is a consequence of the
existence of bundles over S4 and S8 with Hopf invariant 1. However, a method to get
rid of these Z2–ambiguities has recently been given by Crowley as the main result of
his Ph.D.–thesis [Cr02]. In its complete generality the technique is rather lengthy. But
for the sphere bundles we are interested in, it reduces to the computation of one more
invariant which we will present later.

Now as the tools for the almost diffeomorphism classification are developed, the
question is how to descend to the pure homeomorphism classification and how to refine
our invariants to obtain the diffeomorphism case. We have seen in the proof of theorem
1.17 that each class P ∈ P contains exactly 28 different diffeomorphism types which
can be pairwisely interchanged by connected sum with an appropriate homotopy sphere
Σ7 ∈ Θ7. Thus all that remains to be done for the diffeomorphism classification is to
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1 Classification of 3–sphere bundles over the 4–sphere

find an invariant which firstly is additive with respect to connected sum and secondly
distinguishes all 28 homotopy 7–spheres. Such an invariant is given by the µ–invariant
of Eels and Kuiper (see [EeKui62]). We now recall its definition and verify the two
needed properties.

1.34 Definition. A closed oriented (4k− 1)–manifold M satisfies the µ–condition if it
bounds a compact oriented spin manifold W such that the natural homomorphisms

j∗ : H2k(W,M ;Q) −→ H2k(W ;Q) ,

j∗ : H4i(W,M ;Q) −→ H4i(W ;Q) , (0 < i < k)

are isomorphisms and the restriction

i∗ : H1(W ;Z2) −→ H1(M ;Z2)

is an epimorphism.

Observe that our pairs (Wm,n,Mm,n) satisfy the µ–condition. For simplicity we only
give the precise definition of the µ–invariant in the dimension we need it.

1.35 Definition. Let M be a 7–manifold satisfying the µ–condition. Then its µ–
invariant is given by

µ(M) = 1
896

(
〈j∗−1p12(W ), [W,M ]〉 − 4 σ(W )

)
mod 1 ,

where p1(W ) ∈ H4(W ;Q) is the first rational Pontrjagin class and where σ(W ) denotes
the signature of W , i. e. the signature of its intersection form.

In the general case the invariant µ is also defined to be of the form

r1 (N(W )− r2 σ(W ))

where r1, r2 ∈ Q and N(W ) is a certain rational linear combination of the pulled back
rational Pontrjagin numbers of W . The definition is independent of the choice of W
([EeKui62], p. 97). Thus µ is a diffeomorphism invariant of M .

1.36 Lemma. Let M1 and M2 be (4k− 1)–manifolds satisfying the µ–condition. Then

µ(M1#M2) = µ(M1) + µ(M2) mod 1 .

The proof will be geometrical in flavour. We will at first explain how to connect two
manifolds along the boundary and how to construct inclusions of the manifolds the sum
is made from.

In the following, Hn denotes the closed half disc in Rn≥0 which has Dn−1 as its subset
of points with xn = 0. Let W1 and W2 be compact oriented n–manifolds with connected
boundaries M1 and M2. We will define a manifold W with boundary M = M1#M2 as
follows and write (W,M) = (W1,M1)#(W2,M2).
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1 Classification of 3–sphere bundles over the 4–sphere

1.37 Definition. Choose two smooth embeddings f1 : (Hn,Dn−1) → (W1,M1) and
f2 : (Hn,Dn−1) → (W2,M2) such that f2 ◦ f−11 is orientation reversing. Then the
connected sum along the boundary W is given by

(W1 \ f1(0))
∐

(W2 \ f2(0))

where f1(tu) is to be identified with f2((1− t)u) for each 0 < t < 1, u ∈ Sn−1 ∩Hn.

Similarly to the gluing boundaries construction as mentioned in the proof of theorem
1.17, W possesses a natural differentiable structure. It has got the homotopy type of
the one-point union W1 ∨W2. Note that f1(

1
2 Sn−1 ∩Hn) = f2(

1
2 Sn−1 ∩Hn) as a subset

A of W , cf. figure 1.1. This leads us to the following construction.
Consider the homotopy

gi : Wi × I −→Wi

that is given by the identity on the complement of fi(
1
2 Hn) for any t and by

(fi(x), t) 7→ fi

(
x+ t

((
x1, . . . , xn−1,

√
1
4 − x

2
1 . . .− x2n−1

)
− x
))

for each x ∈ 1
2 Hn. After “straightening the angle” at the subset fi(∂(12 Dn−1)), compare

the appendix of [Mil59], the manifold gi(Wi, 1) is clearly diffeomorphic to Wi. Thus we
obtain smooth inclusions Wi ⊆W by regarding fi(gi(Wi, 1)) as the subset Wi of W .

Proof (of lemma 1.36). Choose coboundaries W1 and W2 of M1 and M2 as in 1.34 and
form the connected sum (W,M) along the boundary as in 1.37. We call two triples (or
pairs, or spaces) equivalent if they induce the same singular homology and cohomology
groups and write “∼=” for this equivalence relation. Consider the diagram

0

H∗(W1,M1)⊕H∗(W2,M2)

OO

H∗−1(M ∪A,M) // H∗(W,M ∪A)

∼ h

OO

j // H∗(W,M) // H∗(M ∪A,M)

0

OO

.

Here and in the remainder of the proof rational coefficients are to be understood. The
horizontal line is the exact cohomology sequence of the triple (W,M ∪ A,M). This
triple can be seen to be equivalent to the excisive triple

(W, (M × [0, 1)) ∪B,M × [0, 1))
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1
f (H  )n

[0,1)M

2

nf (H  )

B
A

Figure 1.1: The connected sum along the boundary (W1,M1)#(W2,M2).

where M× [0, 1) is a collar neighbourhood of M in W while B = A×(−1, 1) is a bicollar
neighbourhood of A in W .

The vertical line is the Mayer-Vietoris sequence of the decomposition (W,M ∪ A) =
(W1 ∪W2,M1 ∪M2) which is equivalent to the excisive pair

(W, (M × [0, 1))∪B) = ((W1∪B)∪ (W2∪B), ((M1× [0, 1))∪B)∪ ((M2× [0, 1))∪B)

and hence is excisive, too. Note that

(M ∪A,M) ∼= (A, fi(∂(12 Dn−1))) ∼= (Dn−1, ∂Dn−1)

thus j is an isomorphism in orders less than n− 1. This is the corresponding diagram
in n–th homology

0

��
Hn(W1,M1)⊕Hn(W2,M2)

h∼
��

Q Hn(W,M ∪A)

��

oo Hn(W,M)
joo 0oo

0 .

The embeddings in 1.37 have been so chosen that

h−1j([W,M ]) = [W1,M1]⊕ [W2,M2] .
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Now if α = jh−1(α1 ⊕ α2) ∈ H2k(W,M) we compute

〈α2 | [W,M ]〉 = 〈jh−1(α2
1 ⊕ α2

2) | [W,M ]〉 = 〈α2
1 ⊕ α2

2 | h−1j[W,M ]〉 =

= 〈α2
1 ⊕ α2

2 | [W1,M1]⊕ [W2,M2]〉 = 〈α2
1 | [W1,M1]〉+ 〈α2

2 | [W2,M2]〉

by usage of the fact that the Kronecker pairing is natural with respect to chain maps
such as h taken from the Mayer-Vietoris sequence and j induced by inclusion. From
this it is evident that the index σ is additive with respect to connected sum along the
boundary, i. e.

σ(W ) = σ(W1) + σ(W2) .

Recall that by τM we denote the tangent bundle of the manifold M . We have smooth
projections πr : W → Wr with r = 1, 2 that restrict to the identity on Wr \ fr(0) and
collapse the complement to the point fr(0). Denote the trivial n–bundle over W by εn.
Then the i–th Pontrjagin class of W is given by

pi(τW ) = pi(τW ⊕ εn)

= pi(π
∗
1τW1 ⊕ π∗2τW2) (the pullback-bundle of a point is trivial)

=
∑
s+t=i

ps(π
∗
1τW1) pt(π

∗
2τW2) (coefficients in Q forbid mod 2 torsion)

=
∑
s+t=i

π∗1ps(τW1) π∗2pt(τW2) (πi is covered by the bundle map Dπi)

= π∗1pi(τW1) + π∗2pi(τW2) .

The last step is easy but nontrivial. The idea is that a cycle pushed forward to a single
point is of necessity a boundary. It is the same argument which shows that a point has
no (co–)homology of order greater than zero.

By construction of πr we have π∗1 pr1 +π∗2 pr2 = h−1, thus

pi(τW ) = h−1(pi(τW1)⊕ pi(τW2)) .

Recall that the µ–conditions on M1 and M2 imply that the inclusions ir : (Wr, ∅) →
(Wr,Mr) where r = 1, 2, and thereby also the inclusion i : (W, ∅) → (W,M), induce
isomorphisms on cohomology in degrees 4u where 0 < u < k. These fit into a diagram

H∗(W1)⊕H∗(W2) H∗(W1,M1)⊕H∗(W2,M2)
i1⊕i2oo

H∗(W )

h

OO

H∗(W,M ∪A)

h

OO

jvv

oo

H∗(W,M)

i

ff
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and we compute

i−1pu(τW ) = i−1h−1(pu(τW1)⊕ pu(τW2))

= jh−1(i−11 pu(τW1)⊕ i−12 pu(τW2)) .

So given any weighted partition 4j1 + 8j2 + . . . + (4k − 4)jk−1 = n, we have

〈(i−1p1(τW ))j1 . . . (i−1pk−1(τW ))jk−1 | [W,M ]〉
=〈(i−11 p1(τW1)⊕i−12 p1(τW2))j1 . . . (i−11 pk−1(τW1)⊕i−12 pk−1(τW2))

jk−1 |h−1j[W,M ]〉
=〈(i−11 p1(τW1))j1 . . . (i−11 pk−1(τW1))jk−1 ⊕ (i−12 p1(τW2))j1 . . . (i−12 pk−1(τW2))jk−1

| [W1,M1]⊕ [W2,M2]〉
= 〈(i−11 p1(τW1))j1 . . . (i−11 pk−1(τW1))jk−1 |[W1,M1]〉

+ 〈(i−12 p1(τW2))j1 . . . (i−12 pk−1(τW2))jk−1 |[W2,M2]〉 ,

showing that the rational Pontrjagin numbers are additive with respect to connected
sum along the boundary. This clearly proves lemma 1.36. 2

1.38 Remark. With no change this also proves the additivity of Milnor’s invariant λ
(see [Mil56a], footnote p. 400).

1.39 Corollary. The invariant µ defines a homomorphism of monoids

µ : P −→ Q/Z .

Furthermore, we have µ(−P ) = −µ(P ).

Proof. For the homomorphism statement we still have to check that µ(Sn) = 0. But this
is immediate by choosing the contractible disc W = Dn+1 as coboundary. The second
statement follows since both the Pontrjagin number and the signature in the definition
of µ change sign if the orientation – thus the fundamental class – is reversed. 2

We can embed Z28 ≤ Q/Z as the cyclic subgroup generated by 1
28 ∈ Q/Z.

1.40 Theorem. The invariant µ defines an isomorphism of groups

µ : Θ7
∼−→ Z28 .

Proof. We have already mentioned that Θ7
∼= Z28. So in view of corollary 1.39 every-

thing is proven when we find a homotopy sphere Σ7 ∈ Θ7 such that µ(Σ7) = 1
28 . This

will be accomplished as a consequence of lemma 1.46. 2

This completes the diffeomorphism classification of the manifolds in P up to the
Wilkens–Z2–ambiguity. For our sphere bundles the promised invariant that will rule it
out comes for free.
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1 Classification of 3–sphere bundles over the 4–sphere

1.41 Theorem. The homomorphism of monoids s̄1 = 28µ

s̄1 : P −→ Q/Z

is a topological invariant of manifolds.

Among other things the proof requires knowledge about the spin cobordism ring,
Thom spectra and the Atiyah–Hirzebruch spectral sequence. It is given in [KrSt91],
proposition 2.5. We will see in lemma 1.48 that the invariant s̄1 distinguishes the
ambiguous cases a) and d) at least for the sphere bundles Mm,n.

The homeomorphism classification is readily obtained because all invariants realising
the PL–classification are in fact topological invariants. So the PL– and the topological
classification are the same. This completes the discussion of the classification methods.
For the convenience of the reader we give a summary of our results.

1.42 Theorem. Let m, m′, n, n′ be any integers. Abbreviate “orientation preserving”
by o. p. and “orientation reversing” by o. r.

1 There is a commutative tetrahedron of diffeomorphisms

Mm,n

||

��

##
M−m,−n //

''

M−m−n,n

Mm+n,−n

66

where the straight arrows are o. p. and the waved arrows are o. r.

2 The manifolds Mm,0 and Mm′,0 are diffeomorphic, PL–homeomorphic or homeo-
morphic if and only if m = ±m′. By 1 any Mm,0 has an o. r. self–diffeomorphism.

Let n, n′ > 0.

3 If n 6= n′, the manifolds Mm,n and Mm′,n′ are not homotopy equivalent.

Let n = n′.

4 The manifolds Mm,n and Mm′,n are o. p. [o. r.] PL–homeomorphic or o. p. [o. r.]
homeomorphic if and only if

Φ(Mm,n) = [−] Φ(Mm′,n) and s̄1(Mm,n) = [−] s̄1(Mm′,n) .

5 The manifolds Mm,n and Mm′n are o. p. [o. r.] diffeomorphic if and only if

Φ(Mm,n) = [−] Φ(Mm′,n) and µ(Mm,n) = [−] µ(Mm′,n) .
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1.3 Computation of invariants

The task list theorem 1.42 assigns to us is to compute for any Mm,n the invariants lk,
p1

2 , µ and s̄1. Afterwards we will verify that as promised the invariant s̄1 distinguishes
the ambiguous cases. The classification of the occurring Wilkens triples will be easy.
We will conclude this section by stating the results as simplest possible congruences the
integers m, n and m′,n′ will satisfy if and only if Mm,n and Mm′,n′ are homeomorphic,
PL–homeomorphic or diffeomorphic respectively. Still let n > 0.

1.43 Lemma. The linking form lk : H4(Mm,n) ⊗H4(Mm,n) → Q/Z is isomorphic to
the standard form

lkstd : Zn ⊗ Zn −→ Q/Z
(r, s) 7−→ rs

n .

So this invariant does not contribute to the classification.

Proof. By bilinearity of the Kronecker pairing in definition 1.18, it suffices to show
lk(β, β) = 1

n where β = i∗α ∈ H4(Mm,n) is the generator as in section 1.1 on page
10. We will use the classical technique developed in [SeiThr34], §77, computing the
self linking number of the dual homology class β ∩ [Mm,n] ∈ H3(Mm,n). Omitting the
indices m and n, Poincaré–Lefschetz duality reads

0 // H4(W,M)
j∗ //

∩ [W,M ] ∼
��

H4(W )
i∗ //

∩ [W,M ] ∼
��

H4(M) //

∩ [M ] ∼
��

0

0 // H4(W )
j∗ // H4(W,M)

∂ // H3(M) // 0 .

In particular, we have ∂(α ∩ [Wm,n,Mm,n]) = β ∩ [Mm,n]. Since H3(Mm,n) ∼= Zn ,
there is γ ∈ H4(Wm,n) such that j∗γ = n α ∩ [Wm,n,Mm,n]. So the denominator of
lk(β, β) is n. The numerator is given by the intersection number of the classes γ and
α∩ [Wm,n,Mm,n]. Let D( · ) = · ∩ [Wm,n,Mm,n] denote the duality isomorphism. Then
expressed in terms of the cohomology cup product this intersection number is given by

〈α ∪D−1(γ), [Wm,n,Mm,n]〉 = 〈α, D−1(γ) ∩ [Wm,n,Mm,n]〉 = 〈α, γ〉 = 1 .

2

Recall the setting previous to lemma 1.10 on page 10. Combining lemma 1.11 and
lemma 1.20, we have

1.44 Lemma. The spin characteristic class p1

2 (Wm,n) ∈ H4(Wm,n) is given by

p1

2 (Wm,n) = (n+ 2m)α .

1.45 Corollary. The spin characteristic class p1

2 (Mm,n) ∈ H4(Mm,n) is given by

p1

2 (Mm,n) = 2mβ .
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Proof. Similarly to the proof of corollary 1.12 we compute

p1

2 (Mm,n) = p1

2 (τ(Mm,n)⊕ ν(Mm,n)) =

= p1

2 (i∗τ(Wm,n)) = i∗ p1

2 (Wm,n) = (n+ 2m)β = 2mβ

by stability and naturality of the spin characteristic class. 2

In particular, we see that the ambiguous case a) translates to

a′) n = 2 mod 4, m arbitrary or n = 4 mod 8, m even

while the ambiguous case d) carries over to

d′) n = 0 mod 8, m odd.

1.46 Lemma. The µ–invariant is given by

µ(Mm,n) ≡ (n+ 2m)2 − n
224 · n

mod 1 .

Proof. Of course we choose Wm,n as spin coboundary. Again let E = Em,n denote

the total space of the vector bundle ζm,n : E
π→ S4. Denote by E0 the total space E

with the zero section removed and let j′ be the inclusion (E, ∅)→ (E,E0). By the five
lemma we have natural isomorphisms H∗(E,E0) ∼= H∗(Wm,n,Mm,n). The quadratic
form associated to the intersection pairing

s : H4(Wm,n)⊗H4(Wm,n) −→ Z

is thus given by

H4(E,E0) −→ Z
v 7−→ 〈v ∪ v, [E,E0]〉

with the fundamental class [E,E0] ∈ H8(E,E0) determined by the preferred orientation.
The preferred orientation also gives a well–defined generator u ∈ H4(E,E0) called the
Thom class of the vector bundle ζm,n. Using lemma 1.14 we compute

〈u∪u, [E,E0]〉 = 〈j′∗u∪u, [E,E0]〉 = 〈π∗e(ζm,n)∪u, [E,E0]〉 = n〈ι∪u, [E,E0]〉 = n .

The last step is justified by Thom’s theorem that · ∪ u is an isomorphism. Since we
assume n > 0, we have σ(Wm,n) = +1.

Let α ∈ H4(Wm,n;Q) and η ∈ H4(Wm,n,Mm,n;Q) be generators such that j∗η = nα.
Using lemma 1.11 which is the same for rational coefficients we compute

〈j∗−1p21(Wm,n), [Wm,n,Mm,n]〉
= 〈 1n4(n+ 2m)2η ∪ η, [Wm,n,Mm,n]〉

= 4(n+2m)2

n .

This proves the lemma. 2
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1 Classification of 3–sphere bundles over the 4–sphere

Any Mm,1 is a simply connected homology sphere and thus homeomorphic to S7 as
verified by Smale (see [Mil65a]). For M1,1 we have µ(M1,1) = 1

28 mod 1 finishing the
proof of theorem 1.40.

1.47 Corollary. The invariant s̄1 is given by

s̄1(Mm,n) = 28µ(Mm,n) = (n+2m)2−n
8·n mod 1 = m2

2n + m
2 + n−1

8 mod 1 .

Only for the moment, let m and n be subject to either of the ambiguous cases a′)
or d′). For another integer m′ we have p1

2 (Mm,n) = p1

2 (Mm′,n) if and only if m′ = m
mod n

2 . Since Tamura has constructed explicit orientation preserving homeomorphisms
Mm,n

∼= Mm′,n for m′ = m mod n in [Ta58], theorem 3.1, it remains to us to take care
of the case m−m′ = n

2 which is assumed in the following lemma.

1.48 Lemma. We have s̄1(Mm,n) 6= s̄1(Mm′,n).

Proof. Computing

s̄1(Mm,n)− s̄1(Mm′,n) = m−m′
2 + m2−m′2

2n mod 1 = m
2 + n

8 mod 1

it is easily checked that in none of the three ambiguous combinations of m and n this
term is zero mod 1. 2

As we have just seen, the occurring Wilkens triples are of the form (Zn, lkstd, 2m).
Any homomorphism preserving the standard linking form lkstd is given by multiplication
with an element α ∈ Zn such that α2 = 1. But multiplication by any such α clearly
defines an automorphism of Zn. So adopting the notation of [CrEs03], we define the set
A+(n) = {α ∈ Zn | α2 = 1} and conclude that Φ(Mm,n) = Φ(Mm′,n) if and only if

2m = α 2m′ mod n

for some α ∈ A+(n). By the remarks below theorem 1.27 we have Φ(Mm,n) =
−Φ(Mm′,n) if and only if the above condition holds for an element in A−(n) = {α ∈
Zn | α2 = −1}.

So for counting different (PL)–homeomorphism types represented by bundles Mm,n

the numbers #A±(n) are of interest.

1.49 Lemma.

1 Let r be the number of distinct prime divisors of n and let u be 0, 1 or 2 according
to n 6= 0 mod 4, n = 4 mod 8 or n = 0 mod 8. Then we have #A+(n) = 2r+u.

2 The set A−(n) is nonempty if and only if n = ε pi11 . . . p
ik
k , pi = 1 mod 4 and pi

prime for all i = 1, . . . , k and ε = 0 or 1. In this case we have #A−(n) = 2k.

The proof is a matter of elementary number theory as can be found in [Lev77], theo-
rem 5.2. It follows, for example, that there are no orientation reversing homeomorphisms
Mm,3

∼= Mm′,3. Finally, we can give the main theorems of the classification.
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1 Classification of 3–sphere bundles over the 4–sphere

1.50 Theorem (Homeomorphism and PL–homeomorphism classification).

1 The manifolds Mm,n and Mm′,n are o. p. homeomorphic or o. p. PL–homeomorphic
if and only if

• for n odd:
m′ = αm mod n with α2 = 1 mod n.

• for n = 4 mod 8 with m odd, or n = 0 mod 8 with m odd:
m′ = αm mod n

2 with α2 = 1 mod n.

• for n = 2aq with q odd, a = 1 or 2 with m even, or a > 2 with m odd:
m′ = αm mod n with α = ±1 mod 2a and α2 = 1 mod n.

2 The manifolds Mm,n and Mm′,n are o. r. homeomorphic or o. r. PL–homeomorphic

if and only if there are prime powers pill with l = 1, . . . , k such that pl = 1 mod 4

and n = ε pi11 . . . p
ik
k with ε = 1 or 2 and

• for ε = 1:
m′ = αm mod n with α2 = −1 mod n.

• for ε = 2:
m′ = α(m+ n

2 ) mod n with α2 = −1 mod n.

1.51 Theorem (Diffeomorphism classification).

1 The manifolds Mm,n and Mm′,n are o. p. diffeomorphic if and only if

m′(n+m′) = m(n+m) mod 56n and
2m′ = 2αm mod n with α2 = 1 mod n.

2 The manifolds Mm,n and Mm′,n are o. r. diffeomorphic if and only if

4m′(n+m′) + n(n− 1) = −4m(n+m)− n(n− 1) mod 224n and
2m′ = 2αm mod n with α2 = −1 mod n.

Proof. Theorem 1.51 is the direct translation of 1.42, part 5. The first two cases of
part 1 and the first case of part 2 in theorem 1.50 are also clear since in these cases the
invariant p1

2 determines the (PL)–homeomorphism type uniquely. For the remaining
cases we need to verify that the stated conditions are equivalent to those given in part
4 of 1.42. This is again a problem of elementary number theory. The reader is referred
to pp. 10 and 11 of [CrEs03]. 2

Note that part 2 of theorem 1.51 is slightly mistaken in [CrEs03], corollary 1.6, p.
366.

1.52 Remark (Homotopy classification). By its very nature the classification up to
homotopy equivalence requires different tools from those used here. For completeness
we give the result which is also due to Crowley and Escher, [CrEs03], theorem 1.1, p.
364.
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1 Classification of 3–sphere bundles over the 4–sphere

1 The manifolds Mm′,n and Mm,n are o. p. homotopy equivalent if and only if m′ =
αm mod gcd(n, 12) with α2 = 1 mod gcd(n, 12).

2 The manifolds Mm′,n and Mm,n are o. r. homotopy equivalent if and only if there

exist prime powers pill with l = 1, . . . , k such that pl = 1 mod 4 and n =

ε pi11 . . . p
ik
k with ε = 1 or 2 and

• ε = 1 then there is only one homotopy type which admits an orientation
reversing self homotopy equivalence.

• ε = 2 and the integers m and m′ are neither both even nor both odd.

1.4 Miscellaneous results

Having completed the hard classification work, we reward ourselves by proving some
probably meaningless problems the classification suggests. A manifold is called almost
parallelisable if it is parallelisable after removing finitely many points.

1.53 Lemma. The manifolds Wm,1 are not (stably) parallelisable, not even almost.

For the signature σ(Wm,1) = 1 is not divisible by eight though Wm,1 is bounded
by a homology sphere (see [Mil59], lemma 3.2). On the other hand, Milnor (see
[KerMil63]) has proven that Θ7 = bP8, which says every homotopy 7–sphere and thus

any Mm,1 bounds a parallelisable manifold. So choose a parallelisable coboundary W̃m,1

for Mm,1. Performing surgery below the middle dimension, we may assume that W̃m,1

is 2–connected and thus spin. The µ–condition is automatic by exact cohomology se-
quence. Since every Pontrjagin number of W̃m,1 vanishes, we see

µ(Mm,1) = −σ(W̃m,1)
224 .

Setting m = 10 we thus have σ(W̃10,1) = 8 mod 224. Now by the corollary in
[KerMil58], p. 457, there is a closed almost parallelisable 8–manifold with index 224.
Removing an open 8-cell from it, we obtain a parallelisable 8–manifold W 224 with index
224 and boundary S7. By forming a finite times the connected sum along the boundary
of W̃10,1 and ±W 224 we obtain

1.54 Theorem. There is a parallelisable 8–manifold which is bounded by M10,1 and
has index eight.

More generally, for any k > 1 Milnor constructed parallelisable 4k–manifolds W0

of index 8 which are bounded by homotopy spheres (see section 4 of [Mil59]). The
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construction follows the very direct approach of realising the matrix

2 1 0 0 0 0 0 0
1 2 1 0 −1 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 −1 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


as the intersection form of W0. For k = 2 theorem 1.54 together with theorem 1.40
imply

1.55 Theorem. The boundary of Milnor’s 8–manifold W0 is diffeomorphic to M10,1.

Precisely 16 of the 28 homotopy 7–spheres occur as S3–bundles over S4, realising the
µ–values 0, 1, 3, 6, 7, 8, 10, 13, 14, 15, 17, 20, 21, 22, 24, 27. To any two of these
numbers which add up to 28, there thus is a pair of orientation reversing diffeomorphic
exotic 7–spheres. Representing them by bundles with lowest possible m, these are

(M1,1,M10,1), (M3,1,M12,1), (M6,1,M13,1), (M8,1,M24,1) and (M5,1,M17,1) .

Interestingly, also the µ–value 14 appears. Hence the only other homotopy 7–sphere
apart from S7 that admits an orientation reversing self–diffeomorphism can be given the
bundle structure of, for instance, M20,1. These diffeomorphisms are not fibre preserving
(in which case they were weak equivalences). The author was unable to construct any
of these diffeomorphism explicitly.

Another class of bundles worthwhile examining are those with Euler number 10. For
it has been asked in [GZ00] whether the Berger manifold B = SO5 / SO3 is diffeo-
morphic to a sphere bundle Mm,10 for some m. This is of special interest since it is
known that B admits a homogeneous metric of positive sectional curvature. That B
is PL–homeomorphic to such an Mm,10 has been shown in [KiSh01]. So in view of our
classification scheme all that remains to be done is to compute µ(B). The problem
in doing so is that no spin coboundary for B has been found. Its existence, however,
is ensured by triviality of the cobordism group Ω7. But there is an analytic formula
due to Donnelly, Kreck and Stolz, based on the Atiyah-Patodi-Singer index theorem,
which expresses µ(B) in terms of η–invariants. By this approach Goette, Kitchloo and
Shankar showed in [GKS04]

1.56 Theorem. The Berger manifold B is diffeomorphic to M±1,∓10.

They also conclude that the only homogeneous S3–bundles over S4 are the trivial
bundle M0,0, the Hopf bundle M0,±1, the unit tangent bundle of the 4–sphere M∓1,±2
and the Berger space M±1,∓10.

A completely different source of interesting, possibly exotic 2–connected 7–manifolds
K can be found in the field of algebraic geometry. These appear as boundaries of
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singularities of certain complex hypersurfaces, so called Brieskorn varieties, defined by
complex polynomials. The procedure will be made precise in the following chapter. A
natural task then might be to compute µ(K). For we can determine by convenient
criteria if K is a topological sphere in which case Φ(K) is zero. If so, we can look for
the computed µ–value in the above list to see whether the singularity boundary K is
diffeomorphic to some Mm,1 and thus admits the structure of an S3–bundle over S4.
This, admittedly, was the original idea for my diploma thesis, overlooking that the spin
coboundary F θ which K is naturally endorsed with, is parallelisable. So all Pontrjagin

classes of F θ are trivial and µ(K) reduces again to −σ(F θ)
224 mod 1 or equivalently σ(F θ)

mod 224 which is precisely the invariant used in [KerMil63], theorem 7.5, p. 529, to
distinguish all homotopy spheres in bP4k−1. This invariant has in turn been computed
by Brieskorn, Hirzebruch and Pham, see [Bri66], lemma 8, p. 13, or for an exposition
[HirMa68], Satz 14.7, p. 109. In particular, they show that all homotopy 7–spheres occur
as singularity boundaries. At least, we can still relate this and the following chapter
by enumerating 16 example polynomials, realising the 16 pairwise non–diffeomorphic
sphere bundles of class Mm,1. This will be done in example 2.18.
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This chapter is concerned with the topology of complex algebraic varieties. More pre-
cisely, we will be interested in closed neighbourhoods of their singularities. As pointed
out, Brieskorn, Hirzebruch and Pham have shown that the boundaries of these neigh-
bourhoods can be diffeomorphic to exotic spheres.

The outline is as follows. Section 2.1 gives a short report on the Milnor fibre bundle
of an isolated singularity as introduced in [Mil68]. Milnor further associates two integer
matrices with a singularity which arise from rather different contexts. He then shows
that their determinants are ±1 if and only if the singularity boundary is a topological
sphere. This will be presented in some detail in section 2.2 and section 2.3. In section
2.4 we will show that these determinants are equal up to sign in general. An example
will conclude the presentation.

2.1 The fibre bundle associated with an isolated singularity

Let f ∈ C[z1, . . . , zn+1] be a complex polynomial in n+ 1 variables such that f(0) = 0
and such that the origin is an isolated critical point. In this context “critical” means
all complex partial derivatives vanish. Denote by V ⊆ Cn+1 the set of roots of f . Let
K = V ∩ Sε be the intersection of V with a small sphere Sε centred at the origin.
Then K is a (2n− 1)–dimensional smooth manifold. The proof specifically involves
Whitney’s finiteness theorem for algebraic sets (again see [Mil68]). Moreover, it can be
shown that the complement Sε \K carries the structure of a smooth fibre bundle over
S1 such that K can be regarded as the common boundary of the closure of all fibres of
this bundle. The core of the construction is the following technical lemma.

2.1 Lemma (Curve Selection Lemma). Let V,U ⊆ Rm such that V is real alge-
braic, U = {x ∈ Rm| g1(x) > 0, . . . , gl(x) > 0} for finitely many polynomials gi ∈
R[x1, . . . , xm] and such that 0 ∈ U ∩ V . Then there is a real analytic curve

p : [0, 1) −→ Rm

with p(0) = 0 and p(t) ∈ U ∩ V for each t > 0.

This is proven by reducing the general case to varieties of dimension one. In this case,
a convenient description of W ∩ V for a neighbourhood W of the origin is possible. It
is the union of “branches” homeomorphic to [0, 1) by power series. Then one “selects”
one of these branches as the curve p.
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2 Singularities in Brieskorn varieties

2.2 Theorem (Fibration Theorem). In the above setting let φ(z) = f(z)
|f(z)| for each

z ∈ Sε \K and write Fθ = φ−1(eiθ) where θ ∈ [0, 2π]. Then

F0 ↪→ Sε \K
φ−→ S1

possesses the structure of a smooth fibre bundle.

This is proven in two steps. At first one realises that the real critical points of the
map φ turn out to be precisely those z ∈ Sε \K for which the vector i grad log f(z)
is a real multiple of z. Here the gradient grad g of a holomorphic function g is to be
understood as the vector whose entries is given by the complex conjugates of the partial
derivatives of g. The curve selection lemma then rules out the possibility that there are
points z ∈ Cn+1 arbitrarily close to the origin so that z and i grad log f(z) are linearly
dependent over R. This shows that eiθ is a regular value of φ and hence each Fθ is a
smooth manifold.

The second part of the proof providing the local triviality property is done by meth-
ods of differential topology. A suitable smooth tangent vector field on Sε \K can be
constructed locally using the hermitian inner product of Cn+1. By a partition of unity
we have a global vector field whose integral curves project under φ to paths winding
around the circle with unit velocity. Since these curves smoothly depend both of time
and initial conditions, we obtain the desired bundle charts.

2.3 Lemma. Decreasing ε if necessary the closure F θ of each fibre is a smooth 2n–

dimensional manifold with boundary such that ∂F θ = K and F̊ θ = Fθ.

Again the proof is an application of the curve selection lemma.
It can be applied to show that for sufficiently small ε the re-
striction f�Sε has no critical points on K. This permits the
choice of local coordinates at points of K at least for F 0. The
argument for the other fibres works similarly. A schematic im-
age of the fibre bundle Sε\K is presented on the right. The
fibres Fθ wind around the common boundary K. We will see
that one positive integer determines the fibre homotopy type. S \ K

F 0

F

F

F

3

4

2

K

2.4 Definition. Let g : Cm → Cm be a holomorphic mapping with an isolated zero in
the origin. Then define its multiplicity µ by the degree of the mapping

Sε −→ S2m−1, z 7−→ g(z)

‖g(z)‖
from a small sphere centred at the origin to the standard sphere.

2.5 Theorem. There is a homotopy equivalence

Sn ∨ . . . ∨ Sn −→ Fθ

from the µ–fold wedge of n–dimensional spheres to the fibre Fθ where µ is the multiplicity

of the collection
(
∂f
∂z1

, . . . , ∂f
∂zn+1

)
of partial derivatives of f .
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2 Singularities in Brieskorn varieties

This middle Betti number µ of the fibre is always positive and has become known as
the Milnor number of the isolated singularity.

The proof can roughly be outlined as follows. By the construction of a suitable Morse
function one can show that any fibre Fθ has the homotopy type of a finite CW-complex
of dimension n. Since

Sε \F θ
φ�Sε \F̄θ−→ S1 \{eiθ}

is trivial as a bundle over a contractible base, the total space has any other fibre as
deformation retract. So we have H∗(F θ) ∼= H∗(Sε \F θ). Hence by Alexander duality
Fθ has the homology of a point in dimensions less than n. So if n ≥ 2, by the Hurewicz
theorem we know that Fθ is (n− 1)–connected as soon as we can show that it is simply
connected. This is again a Morse theory argument. The fibre Fθ can be built up from a
2n–dimensional disc by adjoining handles of index ≤ n which all lie in the ambient space
Sε. But the complement of the disc is certainly simply connected and the adjunction of
handles of index ≤ 2n−2 cannot alter the fundamental group of the complementary set.
By induction Sε \F θ and hence Fθ is simply connected. We conclude that πn(Fθ) ∼=
Hn(Fθ) is free abelian since torsion subgroups would prevent Hn+1(Fθ) from being
trivial. This justifies choosing a finite number of maps (Sn,pt)→ (Fθ,pt) representing
a basis which one can unify to a map

Sn ∨ . . . ∨ Sn −→ Fθ

inducing isomorphisms on homology. By Whitehead’s theorem this map is a homotopy
equivalence.

To see that the number of these spheres is the multiplicity µ is once again a matter
of differential topology. Consider the smooth mapping

v: Sε −→ Sε

z 7−→ ε grad f(z)
‖grad f(z)‖

and let M = φ−1([−π
2 ,

π
2 ]). Then one can show as an application of the Lefschetz fixed

point theorem that the Euler characteristic χ(M) and the degree d of v are related by
the formula

χ(M) = 1− d .

If one takes into account that the gradient as mentioned above is defined by means of
the complex conjugates of the partial derivatives, one has d = (−1)n+1µ. For complex
conjugation reflects (n+ 1) real coordinates. Clearly M deformation retracts onto F 0.
We conclude rankHn(F0) = µ.

2.6 Lemma. The manifold F θ is parallelisable.

For F θ is embedded in Sε with trivial normal bundle. So F θ is s–parallelisable and
as a manifold with non–vacuous boundary parallelisable. It follows that F θ has first
Stiefel–Whitney class zero and is orientable. From now on an orientation is meant to be
chosen, i. e. we fix a fundamental class [F θ,K]. The following remark might be helpful
for intuition.
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2 Singularities in Brieskorn varieties

2.7 Remark. The coboundaries Wm,n of the manifolds Mm,n in chapter 1 and the
coboundaries F θ of the manifolds K in chapter 2 are contrary in the following sense.
The manifolds Wm,n have middle Betti number one and thus a one–entry intersection
form. The manifolds F θ have middle Betti number µ which will be quite large in
general and allows highly nontrivial intersection forms. On the other hand, the mani-
folds Wm,n have a nontrivial tangent bundle as detected by the first Pontrjagin class.
The manifolds F θ have trivial tangent bundle. These observations translate into the
intuitive statements that the manifolds Wm,n have an easy homotopy type but a com-
plicated differentiable structure and the manifolds F θ vice versa. Both a complicated
homotopy type and a complicated differentiable structure of the coboundary can induce
complicated differentiable structures of the boundary. This is precisely what the two
summands of the invariant µ ensure.

The last result in this summary says that K belongs to the class of highly connected
manifolds so that the machinery of Wall is applicable in principal.

2.8 Theorem. The closed manifold K is (n− 2)–connected.

Another Morse function reveals that the whole sphere Sε can be reconstructed from
a neighbourhood of K that retracts onto K by adjoining handles of index at least n.
But these adjunctions do not affect the homotopy groups in dimensions 0 ≤ i ≤ n− 2.
Hence πi(K) ∼= πi(Sε) ∼= 0.

2.2 The first criterion

The key to identifying K as a topological sphere is the first reduced homology group
H̃n−1(K) that might not vanish.

2.9 Lemma. Let n 6= 2. The manifold K is homeomorphic to S2n−1 if and only if the
reduced homology group H̃n−1(K) is trivial.

Proof. The case n = 1 is trivial so let n ≥ 3. By 2.8 we have H0(K) ∼= Z and
H1(K) ∼= . . . ∼= Hn−2(K) ∼= 0. Moreover Hn−1(K) ∼= 0 by assumption. For k ≥ 1

Hn+k(K) ∼= Hn+k+1(F θ,K) ∼= (Hn−k−1(F θ,K)/Tn−k−1)⊕Tn−k−2 ∼=

{
Z if k = n− 1

0 otherwise

due to exact pair sequence, theorem 2.5, Poincaré duality and universal coefficient
theorem. Here Tn−k−1 ⊆ Hn−k−1(F θ,K) and Tn−k−2 ⊆ Hn−k−2(F θ,K) denote the
torsion subgroups. In case k = 0 the exact sequence is

0 −→ Hn(K) −→ Zµ −̃→ Zµ −→ 0

and hence Hn(K) ∼= 0.
So we have verified that K is a simply connected homology sphere of dimension ≥ 5.

By the generalised Poincaré conjecture (see [Mil65a]) it is homeomorphic to S2n−1. 2
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2 Singularities in Brieskorn varieties

2.10 Remark. For n = 2 this is wrong. The polynomial f(z1, z2, z3) = z21 + z32 + z53
yields the Poincaré sphere as a counterexample.

2.11 Theorem (1st criterion). Let n 6= 2. The manifold K is homeomorphic to S2n−1

if and only if the intersection pairing

s : Hn(Fθ)⊗Hn(Fθ) −→ Z

has determinant ±1.

2.12 Remark. Recall that the graded commutativity of the cohomology cup product
effects that S is symmetric if n is even and skew-symmetric if n is odd. In the latter
case we have detS = 0 so any topological sphere K of this kind is necessarily due to a
polynomial of an odd number of variables.

Proof (of theorem 2.11). Consider the homology exact sequence

Hn(F θ)
j∗−→ Hn(F θ,K) −→ H̃n−1(K) −→ 0 .

The group Hn(F θ) as well as Hn(F θ,K) by Poincaré duality are free abelian of rank µ
as observed in theorem 2.5. So H̃n−1(K) ∼= 0 if and only if j∗ is an isomorphism. There
is another intersection pairing

s′ : Hn(F θ,K)⊗Hn(F θ) −→ Z

defined as either composition in the diagram

Hn(F θ,K)⊗Hn(F θ)

D−1⊗D−1

��

id⊗h◦D−1
// Hn(F θ,K)⊗HomZ(Hn(F θ,K),Z)

evaluate

��
Hn(F θ)⊗Hn(F θ,K)

h( · ∪ · )([F θ,K])

// Z .

Here D : Hn(F θ) −→ Hn(F θ,K) and D : Hn(F θ,K) −→ Hn(F θ) are the duality
isomorphisms given by

α 7−→ [F θ,K] ∩ α

and h is the isomorphism

0 −→ Ext1Z(Hn−1(F θ,K),Z)︸ ︷︷ ︸
∼= 0

−→ Hn(F θ,K)
h−→ HomZ(Hn(F θ,K),Z) −→ 0

appearing in the universal coefficient theorem induced by evaluation on chains. Let
α⊗ β ∈ Hn(F θ)⊗Hn(F θ,K). We have

h(α ∪ β)([F θ,K]) = h ◦ (α ∪ (·))(β)([F θ,K])

= ((·) ∩ α)∗ ◦ h(β)([F θ,K])

= h(β)([F θ,K] ∩ α)
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2 Singularities in Brieskorn varieties

so the diagram commutes. Now for a basis (a minimal generating set) {αi}µi=1 in
Hn(F θ,K) let

{
αj
}µ
j=1

be the dual basis in Hom(Hn(F θ,K),Z). Then setting βj =

D ◦ h−1(αj) we have a naturally distinguished basis {βj}µj=1 in Hn(F θ). Since

s′(αi, βj) = h ◦D−1(βj)(αi) = h ◦D−1(D ◦ h−1(αj))(αi) = αj(αi) = δij , (2.1)

the intersection pairing s′ is represented as the unit matrix of size µ in these bases. So
det s′ = 1. The two intersection pairings are related by the critical homomorphism j∗
in that for all α, β ∈ Hn(F θ)

s(α, β) = h(j∗D−1(α) ∪D−1(β))([F θ,K])

= h(D−1(j∗α) ∪D−1(β))([F θ,K])

= s′(j∗α, β) . (2.2)

Let Sij and Jij with 1 ≤ i, j ≤ µ be the entries of the intersection matrix of s and of
the transformation matrix of j∗ in each case defined by the chosen bases. Then by (2.1)
and (2.2) we have

Sij = s(βi, βj) = s′(j∗βi, βj) =

µ∑
k=1

Jki s
′(αk, βj) = Jji . (2.3)

So the transformation matrix J is the transpose of the intersection matrix S. The
assertion follows. 2

Before we proceed to the second criterion, let us clarify how the matrices S and J
behave when passing to a different basis {α̃i}µi=1 ⊆ Hn(F θ,K). The multiple indices as
well as the interplay of transposed and inverted matrices that arise when dealing with
changes of coordinates, are a reliable source of confusion. Therefore we want to do this
in some detail.

Let C̃ be the corresponding change of basis matrix, i. e. the i–th column of C̃ consists
of the coordinates of α̃i with respect to the basis {αi}µi=1. Set C = C̃−1. As specified
above we also have a canonical new basis {β̃i}µi=1 ⊆ Hn(F θ) obtained from {α̃i}µi=1 via
D ◦ h−1.

2.13 Lemma. A change of basis from {αi}µi=1 to {α̃i}µi=1 in Hn(F θ,K) results in the
transformations

S̃ = CSC> and J̃ = CJC> .

Note the reversed order compared to how one usually defines congruence of matrices
(J̃ = C>JC).

Proof. By definition we have α̃i =
∑µ

k=1 C̃kiαk and thus
∑

i λiα̃i =
∑

i λi
∑

k C̃kiαk =∑
k

(∑
i C̃kiλi

)
αk =

∑
i

(∑
k C̃ikλk

)
αi, so C̃ transforms the coordinates λi with re-

spect to {α̃i}µi=1 to the corresponding coordinates
∑

k C̃ikλk with respect to {αi}µi=1.
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2 Singularities in Brieskorn varieties

The question is how to describe the change of coordinates in Hn(F θ) when passing from
{βi}µi=1 to {β̃i}µi=1.

Here we observe

δij = α̃i(α̃j) = α̃i
(∑

kC̃kjαk

)
=
∑

kα̃
i(αk)C̃kj

showing that

α̃i(αk) = ((C̃)−1)ik = Cik

for each 1 ≤ k ≤ µ and consequently

α̃i =
∑

kCikα
k .

This yields

β̃i = D ◦ h−1(α̃i) = D ◦ h−1
(∑

kCikα
k
)

=
∑

kCikβk =
∑

k(C
>)kiβk .

Arguing as above C> transforms coordinates with respect to {β̃i}µi=1 to coordinates
with respect to {βi}µi=1. We deduce

S̃ = (C>)>SC> = CSC> and J̃ = C̃−1JC> = CJC> .

2

This result is of course consistent with (2.3).
Setting up the second criterion will be easy as soon as we have constructed a certain

exact sequence which we will introduce in the general context of any fibre bundle

F0 ↪→ E −→ S1

over the circle. For convenience set I2π = [0, 2π] and think of F0 × I2π as embedded in
F0 × R justifying the notation ∂(F0 × I2π) = F0 × {0} ∪ F0 × {2π}. From the diagram

F0
//

��

E

φ
��

F0 × I2π

h

;;

// S1

we have a lift

h : (F0 × I2π, ∂(F0 × I2π)) −→ (E,F0)

which is a continuous one–parameter family of homeomorphisms, unique up to homo-
topy. We want to refer to its restriction

h2π : F0 −→ F0

as the characteristic homeomorphism of the fibre F0.
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2 Singularities in Brieskorn varieties

2.14 Lemma (Wang sequence I). We have an associated long exact sequence

. . . −→ Hj+1(E) −→ Hj(F0)
h2π∗−id∗−→ Hj(F0) −→ Hj(E) −→ . . . .

Proof. This sequence emanates from the long exact homology sequence of the pair
(E,F0) by substituting the groups H∗+1(E,F0) by H∗(F0) as indicated in the following
diagram

Hj+1(E) //

++

Hj+1(E,F0)
∂ // Hj(F0) // Hj(E)

Hj+1(F0 × I2π, ∂(F0 × I2π))

∼ h∗

OO

Hj(F0)

∼
OO

h2π∗−id∗

GG
.

There are at least three different possible view points for the lower vertical isomorphism.
It is the homological suspension isomorphism σ± as e. g. defined in [tDie00], Beispiel
8.7, p. 139. It is the homology cross product × [I2π, ∂I2π] with one of the two generators
of H1(I2π, ∂I2π) as e. g. defined in [tDie00], Satz 4.2, p. 165. And it is the isomorphism
P∗ induced by the prism operator P of chain complexes as e. g. defined in [Hat02], p.
112. In our case, P is associated with the obvious homotopy F0 × I → F0 × I2π of
the two edge inclusions i0 and i2π with 0 and 2π interchangeable. In each case the two
possible choices differ by the factor −1.

That h∗ is an isomorphism can be seen from the diagram

H∗(F0 × [0, 2π], F0 × {0} ∪ F0 × {2π})
h∗ //

∼
��

H∗(E,F0)

∼
��

H∗(F0 × [δ, 2π − δ], F0 × {δ} ∪ F0 × {2π − δ})

h̃= h�F0×[δ,2π−δ]∗

∼

,,

h̃∗ // H∗(E,F[−δ,δ])

H∗(E[δ,2π−δ], F−δ ∪ Fδ)

∼exc.

OO

where δ > 0 is suitably small and the notations

E[δ,2π−δ] = φ−1({eiθ | θ ∈ [δ, 2π − δ]}) and F[−δ,δ] = φ−1({eiθ | θ ∈ [−δ, δ]})

are to be understood.
It remains to prove the identity ∂h∗P∗ = h2π∗ − id∗. Since all homology maps

involved are induced from chain maps, we can verify this on the underlying singular
chain complex. There we compute

∂h#P (α) = h#∂P (α) = h#(i2π# α− i0#α) = (h2π# − id#)(α)

for each cycle α ∈ Z∗(F0). 2
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2 Singularities in Brieskorn varieties

2.15 Remark. In the above reference ([tDie00], Beispiel 8.7, p. 139) it is also shown
that the relative version

× [0, 2π] : Hn(F 0,K) −→ Hn+1(F 0 × I2π, F 0 × ∂I2π ∪K × I2π)

of the homology cross product is an isomorphism as well. It coincides with the isomor-
phism P∗ induced by the corresponding relative prism operator P as defined in [Hat02],
p. 118.

2.3 The second criterion

From the assertion of theorem 2.11 it is not quite obvious that the fibre bundle structure
of the space Sε \K surrounding Fθ is involved. This is different from the second criterion
which is concerned with the transformation of homology classes a fibre transport effects.

2.16 Theorem (2nd criterion). Let n 6= 2. The manifold K is homeomorphic to S2n−1

if and only if the endomorphism

h2π∗ − id∗ : Hn(F0) −→ Hn(F0)

has determinant ±1.

Proof. This is immediate from the Wang sequence

Hn(F0)
h2π∗−id∗−→ Hn(F0) −→ Hn(Sε \K) −→ 0

since Hn(Sε \K) ∼= Hn(K) ∼= H̃n−1(K) by Alexander and Poincaré duality. 2

2.17 Remark. The determinant in 2.16 of course occurs as (−1)n times the evaluation
at 1 of the characteristic polynomial

∆(t) = det (t id∗−h2π∗)

of the characteristic endomorphism h2π∗ in degree n. There is an algorithm to compute
these characteristic polynomials, compare [KWa78].

2.18 Example. For k > 0 let fk be the complex polynomial given by

fk(z1, z2, z3, z4, z5) = z31 + z6k−12 + z23 + z24 + z25 .

It follows from the formulas of Brieskorn and Pham (see [Mil68], theorem 9.1, p. 71)
that the associated characteristic polynomial ∆ is given by

∆(t) =
∏6k−2
l=1 (t2 + tζ l + ζ2l)

where ζ is a primitive (6k− 1)th root of unity. With some algebra we have that ∆(1) =
±1 for all k. Thus K as defined by fk is a topological sphere. Moreover, Satz 14.7 of
[HirMa68] says that σ(F θ) = 8k. With the remarks at the end of section 1.4 we have

µ(K) = 27k
28 mod 1 .
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2 Singularities in Brieskorn varieties

So letting k vary from 1 to 28, we obtain all of the 28 homotopy 7–spheres. In particular,
the following table lists the 16 possible µ–values in Z28 for 3–sphere bundles over the
4–sphere homeomorphic to S7 together with smallest values of m and k such that
µ = µ(Mm,1) = µ(K), i. e. such that K can be given the sphere bundle structure of
Mm,1.

µ 0 1 3 6 7 8 10 13 14 15 17 20 21 22 24 27

m 0 1 2 3 13 8 11 17 20 5 9 24 14 12 16 10
k 28 27 25 22 21 20 18 15 14 13 11 8 7 6 4 1

2.19 Remark. If H denotes the transformation matrix of h2π∗ − id∗ in degree n with
respect to the basis {βi}µi=1, the change of basis from lemma 2.13 obviously effects that
h2π∗ − id∗ is represented by

H̃ = (C>)−1HC>

with respect to the basis {β̃i}µi=1.

One question might arise at this point. Is there a relation between the two criteria
2.11 and 2.16 which goes beyond the fact that both determinants take unit values
whenever K is a topological sphere? In particular, it was desirable that there be a
formula somehow relating the two matrices S and H the criteria are concerned with.

2.4 The criteria relation formula

A first guess for the relation of the matrices S and H might be they are equal. But this
is overly optimistic since it contradicts the transformation behaviour observed in 2.13
and 2.19. Nevertheless, we will arrive at the following point.

2.20 Theorem. There is an isomorphism Ψ : Hn(F 0,K) −→ Hn(F 0) such that

h2π∗ − id∗ = Ψ ◦ j∗ .

If a basis is chosen and recalling that S> = (−1)nS, the theorem takes the form

2.21 Theorem. There is P ∈ GLn(Z) such that H = PS.

2.22 Corollary. The matrices S and H share up to sign the same determinant.

2.23 Corollary. The radical of the intersection pairing

s : Hn(F0)⊗Hn(F0) −→ Z

is equal to the kernel of the endomorphism

h2π∗ − id∗ : Hn(F0) −→ Hn(F0) .
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These conclusions should motivate proving theorem 2.20. As a preparation we will
first of all verify that the homotopy h which induces the isomorphism

h∗ : Hn+1(F0 × I2π, ∂(F0 × I2π)) −→ Hn+1(Sε \K,F0)

also induces an isomorphism

h∗ : Hn+1(F 0 × I2π, F 0 × ∂I2π ∪K × I2π) −→ Hn+1(Sε, F 0) .

The construction is as follows. Remove a collar neighbourhood of K in F 0 from F 0 to
obtain a manifold F̃0 with boundary K̃. Clearly (F 0,K) and (F̃0, K̃) are homeomorphic.
Let (U, V ) be a pair of open neighbourhoods of (F 0,K) in Sε which deformation retract
onto (F 0,K). (Since F 0 and K are smoothly imbedded in Sε, one can e. g. construct
them as tubular neighbourhoods.) Choose δ > 0 such that h maps F̃0×{δ, 2π−δ} to U .
Moreover, we may assume that V was so chosen that h maps K̃ × I2π to V . Finally, let
h̃ be the restriction of h to F̃0 × I2π. As in the proof of lemma 2.14 we have a diagram

H∗(F̃0 × I2π, F̃0 × ∂I2π ∪ K̃ × I2π)
h̃∗ //

∼
��

H∗(Sε, F 0 ∪ V )

∼
��

H∗(F̃0 × [δ, 2π − δ], F̃0 × {δ, 2π − δ} ∪ K̃ × [δ, 2π − δ]) //

∼
,,

H∗(Sε, U)

H∗(Sε \F 0, U \ F 0) .

∼exc.

OO

Now the isomorphism h∗ is given by h̃∗ together with the obvious isomorphisms

Hn+1(F 0 × I2π, F 0 × ∂I2π ∪K × I2π) ∼= Hn+1(F̃0 × I2π, F̃0 × ∂I2π ∪ K̃ × I2π)

and

Hn+1(Sε, F 0 ∪ V ) ∼= Hn+1(Sε, F 0) .

As side result we obtain a relative version of the Wang sequence for our special setting.

2.24 Lemma (Wang sequence II). We have a long exact sequence

. . . −→ Hj+1(Sε,K) −→ Hj(F 0,K)
h̃2π∗−id∗−→ Hj(F 0,K) −→ Hj(Sε,K) −→ . . . .

Proof. This time we use the long exact homology sequence of the triple (Sε, F 0,K).
The substitution by isomorphisms is

H∗(F 0,K)
P∗−→ H∗+1(F0 × I2π, F 0 × ∂I2π ∪K × I2π)

h∗−→ H∗+1(Sε, F 0) .

2
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Now theorem 2.20 is included in the following lemma. For a clear arrangement we
will use abbreviations FI = F0 × I2π and the like.

2.25 Lemma. We have a commutative diagram of free abelian groups

Hn(F0)
j∗ //

P∗∼
��

Hn(F 0,K)

P∗∼
��

Hn+1(FI, F∂I)
j∗ //

h∗∼
��

Hn+1(FI, F∂I ∪KI)

h∗∼
��

Hn+1(Sε \K,F0)
i∗ //

∂ ''

Hn+1(Sε, F 0)

∂

∼

vv
Hn(F0)

whose “∼”–labelled arrows are isomorphisms.

It shall be understood that the canonical isomorphisms

Hn(F0) ∼= Hn(F 0), Hn+1(FI, F∂I) ∼= Hn+1(FI, F∂I) and

Hn+1(Sε, F 0) ∼= Hn+1(Sε, F0)

are to be inserted if applicable.

Proof. The upper square commutes by naturality of suspension (e. g. [tDie00], Satz 9.1,
p. 142). The lower square commutes since the underlying diagram of pairs of spaces

(F̃0 × I2π, F̃0 × ∂I2π) //

h̃
��

(F̃0 × I2π, F̃0 × ∂I2π ∪ K̃ × I2π)

h̃
��

(Sε \K,F0) // (Sε, F 0 ∪ V )

obviously commutes. The triangle commutes as part of the braid diagram of the triple
(Sε,Sε \K,F0). It also shows that the lower right boundary map is an isomorphism.

Hn+1(Sε \K,F0)
×©

&&

$$

Hn(F0)
$$

##

Hn(Sε)

""

""

Hn+1(Sε, F0)

::

$$

Hn(Sε \K)

<<

""

Hn(Sε, F0)

<<

""Hn+1(Sε)

::

88
Hn+1(Sε, Sε \K)

;;

::
Hn(Sε \K,F0)

<<

<<

2
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Proof (of theorem 2.20). We have seen in lemma 2.14 that the composition ∂h∗P∗ is
just h2π∗ − id∗. Following the most outer way in the diagram of the preceding lemma,
we see that h2π∗ − id∗ factorises as j∗ followed by the three isomorphisms P∗, h∗ and
∂. We define their composition to be Ψ. 2

A final example will illustrate that also S3–bundles over S4 with Euler number dif-
ferent from one may occur as singularity boundaries.

2.26 Example. Let f be the complex polynomial given by

f(z1, z2, z3, z4, z5) = z21 + z22 + z23 + z24 + z25 .

Again by the formula in [Mil68], p. 71, we see that f defines a fibre bundle with Milnor
number µ = 1 and characteristic polynomial

∆(t) = t+ 1 .

Evaluating in one gives detH = detS = ±2 which says H3(K) ∼= H4(K) ∼= Z2. Thus
p1

2 (K) = 0 by lemma 1.26. Similarly to the proof of lemma 1.43 one sees that the linking
pairing H4(K)⊗H4(K)→ Z2 is the nontrivial one. This is sufficient for K being (PL)–
homeomorphic to an S3–bundle over S4 according to corollary 1.4 of [CrEs03], p. 366.
Now by part 5 of theorem 1.42, computing µ(K) is enough to decide which Mm,n is a
representative of the diffeomorphism class K belongs to. Since σ(F θ) = ±1, we have

µ(K) = ± 1
224

with the sign indicating orientation. As of necessity n = 2, we only have to determine
m. It turns out that the quadratic equation µ(K) = µ(Mm,2) with µ(K) set negative,
compare lemma 1.46, has m = −1 as unique solution. We thus have proven:

The manifold K is diffeomorphic to the unit tangent bundle of the 4–sphere M∓1,±2.
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