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I Introduction
Let L K be a say finite Galois field extension
Then the Galois group G Gal L K acts naturally
on various objects of interest
2 GAL by K linear automorphisms
2 Ga by group automorphisms
3 Ga Mall Ma L ELI
4 Ga 2 2 trivially
5 Ga M M finite abelian w trivial action
6 G a Glatt on matrix entries by group auto
7 G a GIL GL.lk def by polynomials w K coeff

Note that 1 6 are special cases of 7 i e

G acts on the L point of an algebraic K group G

Often of interest Given G A A determine the

G fixed points AG at A 5 a a for all re G
E
g

GIL GIL n Gluck G k

Idea Study the functor

Note if A is an abelian group it is a ZG module

so first consider IG mod Ab



Lemma I 2 If 0 A I B 0 is exact

in ZG mod then so is BÖ Cain Ab

Proof Let bekerg n BG Then there exist aeA

w fla b But f ra a rfla fca 0

and her f 0 hence at AG

So is left exact Could it be right exact
Let CE C and be B w g b c We only know
rb b A considering f as an inclusion ASB

So we get a map
G A TM ob b an

satisfying are Stb b rb b rib rb

an ra to wit a 2 cocycle a EZ G A

Had we chosen bta a'eA instead of b then a

would differ by the cocycle ral a so define
the 1 coboundaries as the subgroup
B G A are Z G A a'EA ar ra a

So the obstruction to CEC having a preimage
in BG is given by
S c a H G A B2 G A

meaning
A B H G A

in Ab is exact



Exercise Show that H G is functorial and
O A B H G A H G B HYGC

is exact and natural
Find an example w S 0

Using injective resolutions one can define right
derived functors H G extending the ex

ffSo it makes sense to set HO G

Back to a possibly non abelian A e g

G A A G C GC L we see that we need

noncommutative versions of the above

Consistency w the abelian case suggests we set
HO G A AG
H G A Z G A w

Z G A an G A are ai Tae
and a b Ja EA b at ar.ro

Warning H G A is only a pointed set But

Prop I 2 For A B we obtain G A BA and

1 HOIG A HO G B HCG 1 H G A H GB

is exact preimage of a base point image of
preceding arrow

Proof Same as before



Special feature If is a K object then

H G Aut Y 1 Y X

Icf Thm II 3 1

Classification strategy first up to En

typically x ̅ or Kiep then for each
L type find a convenient K form to
and compute H G Aut

In our case G simple 1 connected die alg K group
Classification up to via Dynkin diagrams 1

Jet Go be K split w a given Dya diag Δ

and consider the 5 E S of inner outer auto
1 Ad G Auf G Syn Δ 1

2 H G Ad G H G Aut Go G Syn 1 1

ins E K quasisplit forms of Go
p x H G Ad Ga

syn
where Ga is the

K quasisplit group corresponding to s α

Consider 2 Z G G Ad G 1

HG G H G Ad G HTG 2 Gal

Thm Kneser 60s K p adic H G G 1

H G Ad G HCG ZIG computation
feasible

k field local global principle



H Gal k M T H Galler M

for certain finite abelian M by Poitou Tate duality
Course outline

Number theoretic toolbox

Galois cohomology of finite abelian modules

simple algebraic groups



I Preliminaries from algebraic number theory
Algebraic number theory
I 1 Number fields
Def II 2.1 An algebraic number field is a

finite field extension
Primitive elf Ehm a for some aeh

w unique minimal polynomial f X of
degree d ki Q

The roots aa a EC of f are called the

Galois conjugates of a

Requiring aha defines a ai and

any
a C must send a to some ai so

there are exactly d embedding k

Note that aus aa an ad so

r 1 R iff x ̅ α

r real e b of A r r Tick
real places complex places

d r 252

Example YT 52 1 L
EK r 0 r

Def I 2.2 For α ER the rational numbers

Nara a Tz X Talx and Trara a als
are called norm and trace of α



Let 2 da and 12 1a Then

12 α Id xd 0 1 Ti a 11 Tilda 0

for all i Hence

α basis of det Tilx 0

Def I 2.3 The discriminant of a basis α Ck in

disc 1 2 xd def Ti x Q

Exercise dieser da da def Trara Xix

E a dieser 1 a a I Tila T.la

Similarly for 1k define discrers using those

Ti l w Ti g idk

II 2 Integrality in number fields
Now and in the remainder let k be a number field
Def I 2.2 The ring of integers in k is given by
O ES f a 0 for some manic fe 26 3

Example 00 2 Gauss's lemma
O is to k what I is to

algiebraic rational
integers in integers

Prop II 2.2 Jet da α Ed Then

2 Xp Or 2 das gar fin gen



Cor I 2.3 Or is a ring
Proof 2 da α α 2 α α 2 da α

Lemma I 2.4 For α eh there is β Og m ER
such that α

Proof an α 90 0 die 2 1 a

and ai 90 0 so an Or

From now on we can and will assume

a w a 0s

Prop II 2.5 Zfa Os as

Proof O α 7 2 11.2 a 1 a Trara
rrealai.at Ei
me

Aj dis a
2

Car I 2.6 Or has a 2 basis of rank d

Any such is called an integral basis

Car II 2.7 is noetherian

Proof a Or f g in 2 mod f g in G mod



Def I 2.8 The discriminant of is given by
dieser da dieser das a

for an integral basis α

Well defined because det TI
More generally der diser Pi Os

Die basisof l

Exercise k TD for a square free integer D

int base das

DE 2 4 1 2 25 D

DE 2,3 4 1 V5 40

I 3 The arithmetic of algebraic integers
Let's consider the example k V 5

so 0g 2 V5 Ja 0s we have

22 3 7 2 255 1 28 5

and all these factors are irreducible e g
3 α β α β Of Then Nara a Ne ß 9

so Nera α 3 because only wits have norm
But NeralxtyFs 54 3 4

Bad news Os is not a UFD



Kummer's remedy du an ideal world

there'd be ideal numbers Pa Pa Ps Pa 1

3 papa 7 p Pa 1 255 Paps
1 275 Papa Lecce

2 papips Pa Paps Papa

factorization unique

Apparently Pa 13 pal 1 275 Pa 1.3 µ 12 255
and ps should be determined by the set of all

Or that it divides

So set pa 3 1 2 5 pz 3 2 255

Thm I 3.2 The ring Es is

1 noetherian
ER f a D for monic

2 integrally closed fest Or
3 and non zero prime ideals are maximal

Def II 3.2 An int domain w 2 2 3 is called a

Dedekind domain

Thm II 3.3 Dedekind Every ideal or O 1

in a Dedekind domain 0 has a unique factorization
a pa Pr

into prime ideals pi 0



How do we get inverses of ideals
Let O be a Dedekind domain w field of fractions K

Def II 3.4 A fractional ideal of K is a f g
O submodule a O of K
Example a a 0 for any a K

Evey integral ideal a 0

Observe An O module on is a fractional ideal

iff there exists O CEO sit c a 0

Using this we see that for a 0 ä EK a 0

is a fractional ideal If we define a b as usual

then 1 a a and a ä 1

Thr II 3.5 The fractional ideals form an abelian

group called the ideal group Jk of K

Cor I 3.6 For a Jk we have
a

pine p
with up ER a a Zero uniquely
So Jk is free abelian w basis Spec G 10
Let Pk a aek Jk be the subgroup
of principal fractional ideals



Def II 3.7 The ideal class group of K is CliYp
Hence

2 K J Cl 2
a a

is exact so describes the when

passing from numbers to ideal number s

Need to study Clk and O

Back to K k and O Os

Thn I 3.8 Gauß Minkowski Cls is finite

We call he Ich the class number of k

Example Let D 0 be square free
Then harz 2 DE 1,2 3 7,11 19

43,67 263

cong Gauß proof Baker Stark Heegner

Open Are there if many D w hair 1

Thm I 3.9 Dirichlet O Em S 25 5 2

where µ k is the group of roots of unify in k

Proof of II 3.8 and II 3.5 Geometry of numbers



Exercise Show that Os or is finite for every
ideal 10 an 0s Hint First assume a p is prime
This also proves II 3 2 3

Def II 3.20 The absolute norm of O or Os is

n a Oral

Exercise For af Or we have m a Na a

n a b n a n b Hint C R.T

Obtain a homomorphism n Jk Rio

I 4 Decomposition and ramification

Let p be a rational prime Then

PO p p
Note that Or p is a finite field m pi p

Apply n to p p potier so p p and

f es frei d fundamental equation
ei ramification index of pi over p

fi inertia degree 11

Extreme cases rad p is split
r L f 2 p ramifies completely
5 2 es 2 p is inert



Note por pi Spi p for a unique p
pi lies over p

E ü ix
Def I 4.2 p is called ramified in of ep 1
A rat prime p
for some pl p

Thm I 4.2 A rat prime p is ramified in

kiffplds.comII 4.3 Almost all p are unramified

Remark If Q is Galois and re Gal NG

then v10 Or and

p n 2 r ps 2 Ip p
so Gallk Q permuts the primal ideals over p
It acts transitively exercise and preserves

ei and fi so the fund eg takes the form

e f r d

If Q is cyclic of prime degree
only the above extreme cases can occur



II 5 Valuations and completions

Def II 5.2 A valuation of is a map
1 k R such that for all yet we have

2 1 1 0 and 1 1 0 D

2 ix y lxl.ly
3 Ix y 1 1 41
We dismiss the trivial val 1 1 2 for all Ek

If 1 1 satisfies the stronger
3 y max 1 1 1 1

then 1 1 is called non archimedean otherwise

archimedean

Examples Archimedian Let rick

and set 1 1 Ir x

Non archimedean Let p Or be a prime
For ES write 01 Tipp and set

Ix Ip g Po w g 10 pol p forponzip
p adic valuation

Def I 5.2 1 12 1 12 a 0 1.12 1.1

Thon II 5.3 Ostrowski The above examples
exhaust all valuations on up to



Def II 5.4 The classes of non arch arch

valuations on are called finite in f places

Notation k Volk u Vfl net of places
Note Volk r because cpx.coaj.emb.rs
define the same arch valuation We shall freely
write EVIL or perk

Perks of places
The infinite places complete the picture
Ice Ip 1 for all

They allow for completion so that also

Vflk corresponds to an embedding
k to a complete field ku

Def I 5.5 hr is the completion of k
w r f du x y y x

du Kanchg seg.innull reg in 1 1 du constant sequences

extends to du x Cauchy x SIR Cauchy

Example 1 0 p hr Qp FrachtinIprz
p adic numbers More generally for perf k
we call hop a p adic field



Def II 5 6 Let v Vg k Then

Qr ER X 1 and

On xek.lv x 2

are called the valuation rings of the valued
fields und du resp

Note that Qr O n k and Ov
The rings O and O are PIDs w unique
maximal ideals

Dir Oer VCH 1 and

I Or Ov X 1

so they are discrete valuation rings DVR

The up to association unique elf T QuCOv is

called a uniformiger We have a canonical iso

9
0 9 0

of the residue fields

Thm I 5.7 Let K be complete w valuation v

and L K algebraic Then v extends uniquely
to L If d CL k 40 then w̅ ÜüÄ
Proof Hensel's lemma



In particular up on Qp extends uniquely to Vp on

Given T k x ̅ we obtain Vr Tot
If TE Gal T Op then w̅ TOT so von Vor

Thm II 5.8 2 Every extension w of up from
to k is of the form w Vo for some r

2 Von Vo iff there is I GallEp Qp T Tor

Remark This also holds for p D when D R

Cpx in f places Cong classes of SESE IHR

Real iaf places Embeddings KÜR
Finite places over p Cong classes of x ̅

2 2

prime ideals O p O w plp

Moreover An r k Qp for wirr so

global local

Qp

Thm I 5.9 Qp pkw and kw Qp en for if pas

Bew Let Q a w min poly f Then

f X Ip f X

over Op hence
Ip 9431

k 9 Fti



Def II 5 10 The ring of adiles of is As E kw

almost all coord in Q The idle group is Is Ast

We have diagonal embeddings k As Is
w discrete image where An has unit abhd base

Iris Ur w Ur k open and Ur O for a a v

Similarly for In w Kushi and
sustace Fo

II 6 Local global principles
Idea Let PER X Suppose Eh satisfies

p x 0 Thea of course Eh he defines a

solution ER to p X 0 If on the other

hand we find a local solution El w

p Xv 0 for all k does this imply
that there exists a global solution ER w pA 0

Theoren II 6.1 Global square Ehm

Yes if p X X a for some aeh Ja fact
a is a global square iff it is a local

Square for almost all ve Vcd

Theorem II 6.2 Hasse Minkowski
Jet f X a az Xi anti w air be a

quadratic form Then there exists O ER w

f X 0 iff thereexist OFX.ES w f X 0farallvetls



Theorem II 6.3 Hasse norm principle
Let 1 0 be cyclic and EQ Then Neraly

for some yet iff Neurop y for some YER
for all vip and p so prime

CAUTION

2 I 6.2 says Earp Es Is
for all S k finite
Do we have

in Es s

for all ns 2

No Ju k NF 16 is an 8ᵗʰpower
locally everywhere but not globally
Thor II 6 4 Grunwald Wang 1933 2948

is true except for certain special fields
and 81h and then her

2 II 6.2 does not generalize either
3

3 443 523 represents zero in all Qp
but not in Q Selmer 1951

3 II 6.3 does not extend to abelian extensions
For k V23 V17 every rational

square is a local norm everywhere but
25 is not a global norm Serre Tate



Local global principles for k isomorphism
Thon I 6.5 Jet f and f be quadratic forms
over such that f Es f for all re V11

Then f Esf
Proof Pick a ER represented by f Then f az
represents zero globally hence everywhere locally so

also f at represents zero locally everywhere
hence globally by I 6.2 If the element X Xu

representing zero has Z 1 then f 2 a

Of Z 0 then f repr 0 so f 9 f so it reps all of k
So f g at f g at and fEs f implies
görg by the Wilt cancellation them By induction hypothes
the rank zero case being trivial we have ging so füf
Theorem I 6.6 Hasse principle for SAS

Let A be a CSA over k of degree d Then

A Malk iff Agh Mack for all re Hk

Proof For quaternion algebras this follows from
I 6.5 as a 5 ab rh 3 quad forms
of diner 1 General case global CFT nee below

I 7 Tate Shafareich groups
For a Galois module Gal k Gal Irk A A

and SEV k define the nth Tate Shafareich group



K S A her H k A Es k A
cyrillic sha

where we write H k H Gal k

and I gives Gal kr Gal k A abelian if ns
We can reformulate the local global principles
of Sec I 6 in terms of Tate Shafareich groups

II 6 1 11 k S µ 2 for 5 finite
Indeed µ is a trivial Gallk module so

H k µ Ham Galli µ IM Cl 13 21 es

II 6 4 1 k s µ

Indeed 1 µ GL Ä Ghz 1 exact

on E so 1 Hals µ H k GL

thus H2 k µ
919 1 Ö Hilbert 90

I 6 3 11 0 R GL for cyclic
2 for 1 0 VIVI

Indeed 2 R Gla Riera
GL GL 1

norm one E restriction of scalars Real G Q Gfk

Es H Q Re GL
pso HHQ Ri Gla Thale H k GL O

II 6 5 1 k f 2

See the special feature in Chapter I



II G 6 k PGL 2

Indeed Auf Ma PGla by Skolem Noether and
1 GL Gla PGla 1

H k Gla HTM PGla H k G Brk
1 Albert

II d dim A90

7H41 Paca FLÖTE
So if 1 PGL then diagram chasing
shows α has a preimage in H k Gla 1 whence

α in trivial

Remark There exists an accidental iso PGL SO

explaining the correspondence of quaternion
algebras and roh 3 quader forms w trivial diner

UPSHOT

Study local global principles for the

Galois cohomology of algebraic groups



 

III Galois cohomology of finite abelian modules

III 2 Group cohomology
Recall from Chapter I that for a finite group
G and a 5 E S of left ZG modules

A C 0

we gave an ad hoc construction of an exact sag
AG BG C H G A

There are various ways to introduce higher

cohomology groups to extend this to a L.ES

AG BG C H G A H G B

H2 G C HCG A

2 By injective resolutions
A RG Module I is injection if

Ig
B or equally Hamad I in exact

The abelian category IG mod has enough injectives
For every IG module A we find A I

hence also an injective resolution
0 A I I I

and we define H G A as the cohomology
groups her dir in d of the cochain complex

I I I



This is well defined by the fund Ehm of homol alg
The L E S then follows from the horseshoe lemma

and the snake lemma The construction is

factorialH G are the right derived functors
of c

2 By projective resolutions
A ZG Module P is projective if dually

Ap
β or equally Hamza Ps is exact

P

ZG mod has enough projectives A PSA 0

so pick a projective resolution of the trivial module

P P Po 2 0

and define Hi G A as the cohomology of
Homaal A HomaalPa A HomaglP A

Observe that Hamza 2 A AG

Renard If BG is a connected CW complex
w Tz BG EG and EG BT then EG 2

is a free hence projective resolution of Z
Since Ecu BG A Hamza CILEG 2 A

we this have H G A HEIBG A cohomology
w local coefficients in alg top terminology



3 By homogeneous cochains making 2 concrete

Let hi be the free 2 module w basis G

The diag action G A G endows hi w the

structure of a free KG module and

L La Lo 2 0

is a free whence projective resolution where

di go gi
2 go Jj g

homogeneous cochains

Note that Hamza Li A f G A G equivariant

4 By inhomogeneous cochains
Let X be the free IG module w basis G Then

2

is a free resolution where

di gas gi ga ges go

E 2 gas Gigi g 1 1 gas ganz

Exercise Show that setting
92 Gi 1,92 Gages ga

i

gi
defines an isomorphism of RG complexes X L

Exercise Show that Z Hong A and

B Hamza IX A agree w our previous
definitions of 1 cocycles and 1 coboundaries



From 3 and 4 we observe that H G A

is finite if G and A are

III 2 Tate cohomology
still let G be a finite group
Def III 2.1 The norm of ZG is the element

Na F gg The augmentation ideal is

Da der ZG 2 Eaagg Ja's
For
any RG module A let N A A ans Nga

Thee IgA der N and in N A H G A

Def III 2.2 We call Ag Ho G A A
IgA

the coincrariants of A

By the above N induces N HolG A HCG A

Def III 2.3 Set G A her NY Ä G A coker N

Observe that 2gal are hat isomorphic
hence C a is right exact Dually to III 1 1

we define H G as the left derived functors

of C G Similarly to III 1 2 H G A is also the

algebraic homology of P.gg A for a projection

resolution P 2 by right IG modules



Example If A is trivial then Hz G A GasgA

Def III 2.4 We define the Tate cohomology groups as
Ä G A H G A for 422

G A AVA see above

Ä G A Ho G A Iaa
Ä G A HualG A for 22

Thm III 2.5 0 A B C 0 in ZG Mod induces

Ä G C G A G B Ä G C

Ä G A Ä G B HO G C 1714 A

III 3 Cup products
Still let G be finite and let K G A Hong Li A
be the cochain complex of homogeneous cochains

For ZG modules A and B we obtain a left
ZG module structure on A B A B setting

g a b ga gb

Def III 3.2 The cup product on homogeneous
cochains is the bilinear map defined by
KPIG A KTIG B KPF G A B

au b go Jpeg algo Jp b 9ps Jpeg



Thm III 3 2 We have an induced bilinear cap product
HP G A HT G B HP'T G A B

Proof Well defined because an easy calculation gives
dlaub da ob C 2 P au db

Remark For a HOIG A AG be HT G B

we have a ob f b where f is induced

from B A B a X So for p g 0

we have u AG B A B
9

la b ms aab

A bilinear map A B I C factors as

AFB x ̅

Ax B C

so that we have an induced cap product
HP G A HT G B HP G C

We also have a Cup product
HP G A Är G B HP G C

associated w any pairing A XD C p gez
constructed using the extension X a n ICG of w

d n go ganz JaE 1 2 go gina g gi ganz

for ns 1 and do go gEag Farp g 0 it is the

pairing AVA BYNB induced by 4 For

Pig 0 it agrees w the precious cap product



III 4 Cohomology of profinite groups
Def III 4.1 A topologicalgroup G is called profinite

if G Es Go for an inverse system of finite
groups Giliez

Thm III 4.2 G is profinite iff G is compact and

totally disconnected

Proof die Gi E G closed

trickier GE fing w NIG open
Here G N so because G is compact

Examples Finite groups
Galler Galli 1 Es Galle 1 EIGENer finiteGalois

closed finiteindex

For M discrete torsion abelian the Pontryagin
dual M Hom 1M Q2 in profinite w the

Compact open topology Indeed

m Hon Liz Fa EE a

2 fact is an antiequivalence between

disar fors ab gps and abelian profinite groups
For G abelian profreite HomonfG 92 in

discr tors ab CAUTION For M 2 we have

M 0 2 Rlp so M T Rp E x ̅
Prüfer p groupding p Es



For all Vf k the groups 0 and O are

profinite in particular Zp and Zf
Until further notice let G be a profinite group

Def III 4.3 A discrete G module is a discrete
abelian group A w a continuous action GAA

This means for all a EA the orbit map G A

gaga in continuous Ga geG ga a is open

Examples w G Gal k A I For aek
we have Ga Gall x ̅ a is closed and has

finite index by infinite Galois theory so G in open

A Mulk an invariant submodule of 1

The trivial discrete G Module M e g
M

to be distinguished fromMulk
The previous examples 1 µ E are

examples of commutative affine group schemes over

af Chapter E Ghz Ma Zin constant and

r E E EG acts functorially
Let M be a finite commutative group scheme over k

Then the Cartier dual of M is M Ham M GL

w G action given by r f m r.fr m



For instance Ma Ham mn GL Hom un µ
1 0 a 2 and r r z z

so G A Ma is trivial which means Mi 4 p

Let G mods be the category of discrete G modules

Thea G mods has enough injectives take A I
in ZG mad then A coli I hence

Def III 4.4 For a discrete G module A we define
H G A as the right derived functors of
However G Mods does NOT have enough projections
Note that the RG module KG is not discrete
because the stabilizer of 1 KG in trivial

For explicit computations we therefore define
more generally K G A f G A

p
and di f fod w di as in II 2 4

Theorem III 4.5 For every discrete G module A

we have H G A H K G A

Prop III 4.6 Let Gi be an inverse system of
pro finite groups and Ai be an inductive

system of discrete Gi modules a f

for all ae Ai Set G fein Gi and A ting Ai
Then H G A bin HT Gi Ai



Proof Even stronger we have that the colimitmap

Eng K Gi Ai KIG A

is an isomorphism

Car II 4.7 H G A diesen Hat G 4 A

Proof G Es as discussed above and
A ding A because at A dies in A

Car III 4.8 HT G A is torsion abelian for of 72

Proof Follows from III 4.7 and the fact that

for finite G HSG and q 1 the homomorphism
cores res HT G A H G A

is multiplication w G H apply to H 1

see Oberseminar Algebra und Geometrie

III 5 Galois cohomology
In this section let G Gal k and AE Gmods

Gives an extension ha k and an alg closure
k we can find

Fis
Is

inducing f Galle Gallk Replacing j w j



gives f r j roj j j 5 rofjojY.gl
Ij g jor.jo j2oj
T f r I

w I j j Gallk

Prop III 5.2 Let T E G Then on Eat and

a Ta induce an automorphism Ie of H G A

and It id

Functoriality f G G g A A additive w glflr a dgla
induce H G A HT G A

Proof Can be checked on the cocycle description

of H G A General case by homological algebra

Hence the induced homomorphism

H Gal 1 A Hat Gallk A

is independent of j In particular for Sa k

we conclude that any
two algebraic closures I I

give canonically isomorphic
HT Gal e A HT Gal Iz A

so we may write

HT R A HT Gall A

the g th Galois cohomology of k w coeff.in A



If A is a commutative affine group scheme over

and k k is any field extension then

f Gal kz Gal k and g A E ACE

satisfy g flo
a 5 gla hence we obtain

HT Gal k ALI Hat Gallka ACE

Hat k A H ka A
well defined and functorial in k i e A defines
HT A field ext 1h ab groups

Examples 1 A Ga the additive group scheme

over w Galt x ̅

Thm III 5.2 K G 0 for all KM and all go

Proof Every finite Galois extension L K has a

normal basis i e Lüften for some EL

This means L in Gallh K induced Def A is

G induced if A
g 8D for some DEA A G induced

module A has trivial cohomology because

Hamza X A Home X D w X as in III 3

is exact since each Xp is 2 free
Hence H K Ga ein

GULL K 4 0

by III 4.7 which provides iv s of the complexes



2 A Gm Ghz the multiplicative group scheme
over w Gm E I

Thru III 5 3 Hilbert 90 H k Gm 0

Proof As above it is enough to show that

H Gallus O for every finite Galois extensio
L k Set G Gallhik Let roar be a cocycle in

Z G L By Dedekind's theorem

G Home L L in linearly independent over L hence

we find such that b Ea air x 0

For all TE G we conclude

T b 2 ar Tolx aria Erlx

a E a arrlx a b

so a b 2lb 215 5 is a coboundary

Exercise Show that if Gal Lk r is cyclic
then for every w Nur x 1 there exists

ce L such that 5 Hilbert's original Thm 90
Hint Use that Ä IG A G A for cyclic G

Def III 5 4 The abelian group H k Gm in

called the Brauer group Brik of k



3 A µm the finite abelian group scheme of nth
roots of unity
Thm III 5.5 H k ma

111 1
Proof 2 mn Gn Gm 2 meaning

2 µ_ E 1 1 2 is exact gives

H k µ Hh Gr

hence H k µ coker 8 n

Thm III 5.6 H k ma Br k In the subgroup

of Brik of elements whose order divides n

Proof
Hall Gm H k µ Hill Gm H'll Gm

hence H k µm E her Br k Br k Br e n

Cor III 5.7 If k contains a primitive n th root of
unity then HM Fun and Hill In Bock Lu

Proof Ja that case µ E so that µ
is a trivial Gallk module

4 Hilbert 90 has the following noncommutative

generalization for any field K
Thm III 5.8 H K GL 0



Proof As before for a cocycle r an form
b E ar r X and check that Elb a b
Then show that Gla L for L K finite
Galois can be so chosen that b is invertible

III 6 The Brauer group and local duality
Recall that every CSA A over a say perfect field K
is of the form AE Mu B for a uniquely
determined division algebra Da over K

Define A B DAE DB then endows the

set of equivalence classes of CSA over K w a

well defined structure of an abelian group SACK

Thm III 6.1 SACK Br K

Proof Auf Mulk PGL_ K by SkolemNoether

1 GL GL PGL 1

H K GL H K PGL H K GL

III 5.7
This defines CSA K Br K which gives the iso

A SEEICA

Examples 2 If K K then Br K 0

2 Of K is finite then Br K 0 by



III 6.2 and Wedderburn's Ehm that every finite
skew field is a field Proof from the BOOK

3 Br IR 2
2 because the only central

division algebras over IR are IR and It

4 Of K Qp has finite degree then B K 92
Recall from Oberseminar on dass field theory
If Kur K is the maximal naramified extension
then Gal Kur K x ̅ so for each n there

exists a unique unramified ext La K and

for all L K w L K n we have

H L K Gm H Lu k Gn H K Gn
Hence Br K Colin H Lu K Gm and

innen H Lu K Gm 22 2 so Brik

Car III G 2 H K µ KIKI is finite and so

is HYK µ 2 n E 42
A spectral sequence argument then implies that

actually H K M is finite for every finite
commutation Gal K Module M

5 From global dass field theory we have

Them III 6.3 Albert Brauer Hasse Noether
2 Br k Em Br Ihr 0 2 1



Again let K Qp be a p adic field and let

M be a finite commutative group scheme over K

equivalently a finite commutative discrete
Gal K module Evaluation gives a pairing of
Gal K modules Mx M GL

inducing a cup product

H K M H K M Br K

Thm III 6.4 Local Tate duality For i 0,2 2

H K M H K M

is a perfect pairing of finite abelian groups

Proof One checks that the functor
Gal K madfinte ab groups

A H K A

is represented by µ K colimaMal K i e

H K A Homaack A µ naturally in A

Since Hon Gaeck M µ Hongan M GL

HO K M this shows H K M HOCK M

and this iso.is implemented by the cup product
This shows the case i 2 For i O replace M by M
For i 2 verify that H K M H K M is ing



III 7 Unramified cohomology
still let K Qp be a finite extension

Def III 7 2 We call A Gallk Mods unramified

if Gal K Kur acts trivially on A In that

case we set Hier K A H Gal Kur K A

Prop III 7.2 Suppose A is finite and unramified
Then Hör K A K A and HE.lk A 0

for i 2 For i 2 HI K A H K A is a

possibly nontrivial possibly proper subgroup

Proof Hi K A AG Kur K AG EK Gal x ̅ Karl

AG EK HO K A That HE K A 0 for it
follows from ed I 1 cohonological dimension
use IET Ip and H 2pm 2

p Krpn
HOLZ p Ip Rlp so H Ip Ip
dig Epa Ep 0 because the transition map

are Zip hence are trivial For G pro p

cdp G n if H G Ip 0 so adp Ip 2

But H Rp p Home Ip Ip Hon
pap p

p so cdp Rp 1 whence cd 2 suppcdp Rp 3

Lastly HE K A H K A by inf res

With respect to local Tate duality III 6 4 we have



If A is finite naranified then so is A

We have Hier K A Hin K A for i 0 1,2

Exercise i Show that µ in naramified if ptu
ii Show that then Hr K ma

0
10

Hint use that Our Kür has H K Our 0

III 8 Poitou Tate duality
Jet M be a finite Gallk module

Goal Find a local global principle informing about
the diagonal maps Bi H k M Ecs Hilke M

Convention If i O and e Volk then in this

section Hill M shall mean Ihr M so

ku M 0 for complex and Hold M Mal
Nacht

for v real

Prop III 8.2 The module M is unramified outside

finitely many ve VCS as Gallku module

Proof The subgroup G re Gal k r.mn for
all me M Galler is open hence of finite index
and the corresponding field extension 11k is

unramified at all v discrers So Gallhür

Gallen Gal l acts trivially for any w lutdiscre



Def III 8 2 We define P k M as the restricted product
P k m E Hilke M w.it Härter M

Hence III 7 2 implies
Polk M Holler M in compact
P k m H Ihr M H hr M is discrete

P k m T H Ihr M H hr M is locally
compact notation II suggested by Tate

Moreover P M Hilke M for is 3 because
cd Gallku 2 for v finite Indeed

www.u E.EE E EE
and H he mn Eaa by III 6.2

Prop III 8 3 The diagonal map
β p Hill m Eis Hilke m

has image in P k M

Proof Let EH k M Pick elk finite Galois
w α Hill k m and Galle A M trivially
If u is unramified in l k and wir is any place

of 1 then Hill k m H k M Hilke n

H du her m Hilkühr m

shows that α maps to Hür Ihr M for a a v



Prop III 8 4 Real local duality Let Mo be a finite
Gal CHR Module Then cap product defines a

perfect pairing of finite abelian 2 groups

Ä IR Mo Ä IR M Br R 2 22

Prop III 8.5 Tate local duality induces iso s

Polk m P k Mi and P K M P k M

Proof For i 0,1 2 we have

Pils a T H hr M T H hr 1 restricted

w.r.tn lkrimyyi.ie g
Hence by III 6.4 II 8.4

P k a E T H hr M restricted w r

kmh a ms Härter M H Ihr n

Correspondingly let P k M H n

be the dual of Mü H ll n P n and recall

that we have der β m Hill m
see Sec II 7

Thm III 8.6 Poitou Tate

i For is 3 we have Hilk M Hilke M
ii The Tate Shafareich groups k M and

1 R M are finite and dual to each other



iii we have a 9 term exact sequence

0 Holk M I Holk M H K M ga
sHTs.ms

HTr msH4r.m4tt g

H k M Hilke M Holk n 0

The boundary map 82 arises as

H k M coker 8 coker β her ß
K M 11211 m H m

and similarly for 8

Example k Q M 2 2 Recall EM 2 2

nu

iÄ

yg o

0

Ei
D a 2

Recall from Tha II 6.4 that

2 2 11 NT µg III QM so for
1 0 57 the first boundary map in non trivial

if M µg and the second boundary map in

non trivial if M 2 8



Note that the dual of the Pit sey for M is the
P P seq for M Note also that topologically the

P T.seq.in of the form
O

sfinite
compact

scompa.tlsdincrefe

doc.cpt.Tcompactsdiscre.tn
discrete finite 0



 

II Galois cohomology of simple algebraic groups
II 1 Noncommutative cohomology

Jet G be a profinite group
Def II 2.2 A G set in a discrete top space A

w a continuous G action If A carries moreover

a group structure preserved by the action
ab Tib for a be A re G then we call A

a G group

Observe that a G group w abelian G is just
a discrete G module as in Def II 4.3
Proceed as in Chapter I
For a G net E set HOIG E EG
For a G group A set Z G A a G A

are array for all re G

For a a Z G A define a a iff there
exists be A such that a b ein'S for all reG

Set H G A Z G A pointed set

One checks

H G A
bing.at Gu A

H G A is funcforial in A for i 0 2

11 coincides w the prior def if A is comm



Prop II 2.2 af Prop I 4 Let A Ia B be Ggroup
Then G A Bra in a G set Ggroup and

2 HCG A HOIG B HO G B A H G A H GB
H2 G Bla is exact

Description of 8 For SA BA set 80lbA 5

Exercise i Check 8 SA in a well defined 1 cocycle
and prove II 1 2

Observe that for A B we have an action

BA A H G A defined as follows
For SA 1A and a H G A set

bA.la TM b afb

Prop II 2.3 i x i iff α e BA α

Proof Write a α Ca Then there is beB

w af 5hr5 Then bait arb blüht so
BAE and bA a a The converse is clear

Prop I 1.4 Of A La B is central then

H G B H G B1 H G A in exact
and 8 is a homomorphism

Description of 8 Lift a G By to b G B

continuity is automatic and set 84cal G b b



II 2 Twisting
Jet 2 A B I C 1 be a 5 E S

of G groups and let β b H G B

To describe the fiber f Ip ß of the map
p H G B H G C

we define the twisted G group B which equals B
as a group but the new G action in given by

in b bit for EB re G This also defines

bat because AI B and s C p.sc So we have
2 A B C 1 and correspondingly

HIG A HEY
D HE

H Giga H G B HHG.sc
where Is defined by T b and Epos

are bijection sending the trivial class to

β and m ß respectively This transforms the

fiber of β into her p Similarly for a central ext
i p

2 A B C 1

of G groups and Ffc EH G C we get

H G B H G C HCG A w 84118

IG B ÄÄÄ c Hua a
18 848 so

8 8481 Eher 8



II 3 Noncommutative Galois cohomology and forms
From now on let K be perfect Recall from Chap I

Meta this I 3 2

If L K in Galois and is a K object then

Y K object EY H L K Aut X
Lrk firmsof

Meta proof Let Y be a K object and f X Y

Set a Gal L K Auf X r an f f
Then are f f f folf f

f f f f arorae
so we

may assign
Yt a H L K Aut X

Since two fit Y satisfy t.EE f
we have at f f 5 f o f orb so

a a is well defined
Injecticity Suppose Y and Y define füorf
fit Then there exists be Auf s

t.fiorf 5of orfirb f b f b

Hence

f 5 if f Hilft 5 fi
f 5 f

so the iso frobiof is def over K hence42 Er 42

Surjectivity Use a H L K Aut X to twist



the action Gal L K XL and let at Taaecark
Then X Ca

Remark To ensure Gallery defines a K object

one typically has to impose conditions For example

if is a K variety
V it should be quasiprojective

e g an algebraic group

Similarly Auf V is not always representable
and even if the representing object might not
be of finite type so some care is necessary
when applying the Meta thm

We see that Kobjects w L isomorphic automorphism

groups have bijectively corresponding Kforms eg

eobjects quat alg Severi Brauer Iiicurves

Auf PGL PGL SO

II 4 Affine algebraic group schemes
From now on let char K 0

Def II 4 2 An affine algebraic K group scheme
is a functor G K Alg Set representable

by a f g K alg OLG together w a hat trafo



m Gx G G sit for all Ae K Alg
ma G A GLA GIA defines a group structure o

GLA Morphisms are hat trafo preserving the gp structa

Examples Ma 01µm 1
A finite group M defines a constant group
scheme M w 01M K Im K so that M K

Homme K K E M standard basis eg of K
consists of idempotent and 2 0121 9222
Sha O Sha K 12s s tun def Xig 1

Jet G be a K group and L K then precomp w

LAlg KAlg defines the L group G w OLG
L G called base extension of G from K to h

Prop I 4 2 Let G be an algebraic K group and

L K Galois Then G L in a Gal hrk group
by the functorial action

Proof Let a GIL Honig K X X L

be determined by la lach and set ho kllag l

Then Gal hrk Gal L ho Gal L K

For a be G L and TE GAIL K we have

ab G r m_la b t.me GIT a Gls b S



A normal algebraic subgroup HSG is a subfunctor
such that 1H A GIA is a normal subgroup for all
AekAeg and IH is representedby a quotient of OLG
we have 1H G H GIK Gal K H EH

Morphisms Ga G have kernels and for 1H IG
the factor group 9H is defined subtle

I 5 Classification of simple groups over alg closed fields
We agree that undefined properties of G e g
abelian or connected refer to GIF

Def II 5.1 An alg K
group

G is called simple

if it is connected non commutative and
every proper

normal subgroup of G is finite We say
a is

absolutely simple if moreover Gp is simple

Def II 5.2 A simple K group G is called simply
connected if every surjective morphism G G

w finite kernel and I connected has trivial kernel

Thm II 5.3 Suppose K is alg closed Then every

simply connected simple alg K group G is

isomorphic to precisely one of Sha u 1

Spinn u 4 Spa hr2 or five exceptional groups



Proof Pick a max torus GL IT G

Then G H defines a pair 18,1 of a simple
Lie algebra w a Cartan subalgebra which gives
rise to an irreducible root system ey G 1
These are classified by Dynkin diagrams 1 1 g b

An n 1 Stutz

C In 3 sp

Da n 4 902m

Es

Ez ey

Es er exceptional
types

Fu f

G cg

and form a complete invariant

https www.math.uni duesseldorf.de kammeyer lie algebren.pdf



The An G classification stays intact for general K w

char K O under the assumption that G is Ksplit
meaning there is a maximal torus GL TSG such

that Ty Gq is still maximal

Thm II 5.4 The K groups Shutz n 1 Spin u u 2

422 Spa In 3 Spin n a az 4 and the

K split groups of type Es Es Es Fu and G

form a complete net of representatives for the
iso classes of K split simply connected abo
simple K groups

Upshot

Classification over IT by Cartan killing type An G
Each type has a unique K split K form Go
Goal

Find all the other K forms or equivalently by II 2.2
Foreach K split form Go determine H K Aut Go

II 6 Classification of simple groups over p adic fields
Let Go be a K split simply connected absolutely
simple K group

w Dynk d Δ Then AufGo is a Kgroup an

2 Ad G Auf Go Sym Δ 1
inne automorphisms TonstantJroupscheme

is a split exact sequence of Gallk groups



From I 1.2 we obtain

2 HYK Ad Go H K Auf Go H K Sym 1 1

We have Sym 1 1 hence H K Syn 1 1 if G

has type Az Br Ca Es Es F or Gz By III 5.7
we obtain H K Syn 1 Finge if Go has type
An nzz Da 425 or Es in type Du we have

Syn Δ 5 triality

For α a EH K Syn Δ let Gz correspond to s α

by I 3.2 The K group Ga is called the quasi
split form w discriminant α By twisting we have

2 HHK Ad Go H K Auf Go H K Sym 1 1

2 HYK Jd G H K Auf G H K.ly A 1

soa AdGo E.eud soaltutGo Fünft SgmΔ andersG hastyped

so p α H K Ad G
kymagen by I 1.3

So it remains to determine H K Ad Gz syma
for all quasi split forms Gg By I 2.4 the sag

1 2 G Gz Ad G 1

gives the exact sequence
H K G H K Ad G H K Z Ga

and S is Sym 1 equivariant note that Syn Alk AZ G



Thm II 6.1 M Kneser Let K Qp be finite and

let G be a simply connected simple K group
Then H K G 1

Proof A case by case investigation
Car II 6 2 For Krap fin the map 8 is a bijection
Proof Injecticity her S 1 by the above

By twisting 8 8 a heras 1 for
all a H K Ad Ga by the above too

Surjecticity in a by product of the proof of II 6.2

Remark II 6.3 Surjectivity also holds for numberfield

Finally for K Qp finite local Tate duality III 6 4

gives H K Z Ga HO K ZIG which can

easily be computed For example if Ga has type
Az Bu Ca or Ey then 2 Gz Mz so

HOCK Z G HOLK 2
The action Sym A I H K ZIG must be trivial

if H K ZIG has order one or two 2 types
An 422 Dau a u23 and Es Sym 1 acts

by inversion In type Den u 3 Syn Δ acts

as one of the three order two subgroups of
Auf 2 G Auf 2 2 22 ES and for a 2

Syn 1 5 acts as the full automorphism group



The results can be summarized in the following table

Type of Ga An

Aziz
Azn Bu C Dana Du z

H K ZIG Fata 0

Ip α LES 2 2 2 3 2

Dan Dan D Du Es E E Es Fy G

2 0 0 0 0 0 0

1274 2 2 1 2 2 1 2 1 1 1

II 7 Classification of simple groups over number fields

Let Gobe a k splitsimply coma abs simple kgroup
From the previous section we see that determining
H 1 Auf Go splits into determining
i H k Syn Δ and

ii H k Ad G syna w Gz S α for EHM Syna

i Except when Go has type Du Syn 1 EI or

so H k Syn 1 3 or 1
1 12 by III 5.7 As in the

example of the Poitou Tate sequence such

global square residues can be prescribed locally by

Ein Ene



ii We have a diagram
HIS Ad G HIS ZIG

Eis Ihr Ad G E räteHÄ ZIG

Since Z Gz is a finite commutative Gal k module

Poitou Tate duality shows in fact that

HIS Ad G E H k ZIG

Eis Ihr Ad G E k ZIG

Thm II 7.1 Kaeser Harder Chernonsor Let G be

a simply connected abo simple 1 group Then

HIM G Ja H her G
So if is totally imaginary the exact sequence
and twisting gives

HIS Ad G Hlk ZCGIL.gssynA
BIG

Ära Ihr Ad G k Z G IgmTyra



Moreover one checks case by case that her β GIO
So the Poitou Tate sequence

H k ZIG Hier ZIG HI ZIG 0

completes the classification

Now allow to have real places and consider

H k ZIG HM G H k Ad G H k Z G

L
k 1921 äh G

Älteraaa.EEQH4 Eia

HO k Z G

Thm II 7 2 The map y is injective and

im 2 her 8

Proof By a 4 lemma diagram chase der 2 2

By twisting 4 in injective The inclusion in y
her T si in clear from the exactness

of the vertical P.T.se g
Jet Lu Eher 8 S Then there exists

β b HM Ad Ga such that β 8 ß ES k

Twisting w b gives the 5 E S



1 ZIG Gia Ad G 2
115

2 2 G Ad G 1

where G is the inner k form of Gz defined by β
In the corresponding diagram

Hals G HIS Ad G H

kif
ÄHMG H hr Ada HIE ZIG

the family xv Htlv Ad G corresponds to

xi H Ihr Ad G w xi her 8 imOp
Hence there exists α im p w ä α

Translating back α E H k Ad Gz corresponds
to a class α H k Ad Ga realizing the

family Xv as its localization
Hence we may prescribe local classes α H he Ada

at will under the condition 8 8 0 and

obtain a unique global das α EH k Ad Gz

realizing the local forms as completions Laser

1 forms of G correspond uniquely to SgmΔ orbit

of the forms α This completes the classification of
simply connected absolutely simple k groups


