Nachklausur in Elementarer Zahlentheorie, SoSe 2006

Aufgabe 1

- (a) Zeige, daß für alle $a \in \mathbb{Z}$ gilt: (2a+1, 9a+4) = 1.
- (b) Zeige, daß für alle $a, b \in \mathbb{Z}$ gilt: $(a, b) = [a, b] \Leftrightarrow a = \pm b$.

Aufgabe 2

Zeige: Ist für $k \ge 1$ die k-te Fermatzahl $F_k = 2^{2^k} + 1$ prim, so gilt

$$\left(\frac{3}{F_k}\right) = -1.$$

Aufgabe 3

Für welche $n \in \mathbb{N}$ ist $\varphi(n) = 18$?

Aufgabe 4

Bestimme alle Lösungen der Kongruenz

$$x^3 - 4x - 5 \equiv 0 \ (50).$$

Aufgabe 5

Sei p > 3 eine Primzahl. Zeige:

$$\left(\frac{-3}{p}\right) = 1 \quad \Longleftrightarrow \quad p \equiv 1 \ (6).$$

Aufgabe 6

Zeige: Für alle $n, k \in \mathbb{N}$ gilt

$$n^k = \sum_{d|n} \mu\left(\frac{n}{d}\right) \sum_{t|d} t^k$$

Aufgabe 7

Bestimme die kleinste positive ganze Zahl a > 2 mit

$$2 \mid a$$
, $3 \mid (a+1)$, $4 \mid (a+2)$, $5 \mid (a+3)$, $6 \mid (a+4)$.

Aufgabe 8

Zeige: Eine Zahl $n \in \mathbb{N}$ kann genau dann als Differenz zweier Quadrate geschrieben werden, wenn sie das Produkt zweier Faktoren, die beide gerade oder beide ungerade sind, ist.