Mathematisches Institut Abt. für Reine Mathematik

01.05.2007

Dr. K. Halupczok

Übungen zur Vorlesung **Elementare Zahlentheorie** SoSe 2007

Blatt 3

Abgabe: Dienstag, den 08.05.2007, zu Beginn der Vorlesung

Aufgabe 1.

- (a) Bestimme die letzten drei Ziffern von 11²⁰⁰⁷.
- (b) Bestätige die Kongruenz

$$2222^{5555} + 5555^{2222} \equiv 0 \ (7).$$

Hinweis: Berechne zuerst 1111 modulo 7.

Aufgabe 2.

(a)
$$\varphi(7n) = \begin{cases} 6 \cdot \varphi(n), & \text{falls } 7 \nmid n \\ 7 \cdot \varphi(n), & \text{falls } 7 \mid n \end{cases}$$

- (b) Aus $\varphi(n) \equiv 2(4)$ und $n \neq 4$ folgt $n = p^{\alpha}$ oder $n = 2p^{\alpha}$, wobei p eine Primzahl $\equiv 3(4)$ ist.
- (c) Es existiert kein n mit $\varphi(n) = 14$.
- (d) Die Goldbachsche Vermutung besagt, dass sich jede gerade Zahl ≥ 4 als Summe zweier Primzahlen darstellen lässt. Zeige, dass die Goldbachsche Vermutung die folgende Aussage nach sich zieht: Zu jeder geraden Zahl 2n gibt es ganze Zahlen n_1 und n_2 mit $\varphi(n_1) + \varphi(n_2) = 2n$.

Aufgabe 3.

- (a) Finde ein a^* mit $6183 \cdot a^* \equiv 1(12482)$.
- (b) Ermittle die letzte Ziffer von 3^{100} unter Verwendung der Fermat-Kongruenz.
- (c) Zeige: $7 \nmid a \Rightarrow 7 | (a^3 + 1) \text{ oder } 7 | (a^3 1)$.
- (d) Zeige, dass für alle $a \in \mathbb{Z}$ gilt: $a^{13} \equiv a(273)$.

Aufgabe 4.

- (a) Seien n und m natürliche Zahlen. Zeige, dass 3^n+3^m+1 keine Quadratzahl sein kann. (Hinweis: Rechne modulo 8.)
- (b) Zwei Primzahlen p und q heißen Primzahlzwillinge, wenn deren Differenz q-p=2 ist. Zeige: Für Primzahlzwillinge p,q mit p>3 gilt die Kongruenz $p\cdot q\equiv -1(9)$.