Übungen zur Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16 P. Albers, K. Halupczok Blatt Nr. 1

Abgabe: Donnerstag, 29. Oktober 2015, bis 08:30 Uhr in den jeweiligen Briefkasten im Hörsaalgebäude (Briefkastennummer der angemeldeten Übungsgruppe s. Internetseite der Übungen)

Wichtige Hinweise:

- Einige der Begriffe und Notationen auf diesem Übungsblatt werden erst in der nächsten Vorlesung erklärt.
- Auf den meisten Übungsblättern werden Sie Bonus- oder Knobelaufgaben finden. Diese sind mit einem * markiert. Mit diesen Aufgaben können Sie zusätzliche Punkte sammeln.

Aufgabe 1

Es seien M, N, M', N' Mengen. Zeigen Sie durch ein Beispiel, daß die Menge

$$(M \times N) \setminus (M' \times N')$$

im allgemeinen verschieden ist von der Menge

$$(M \setminus M') \times (N \setminus N').$$

Zeigen Sie, andererseits, daß $(M \times N) \setminus (M' \times N')$ stets als Vereinigung zweier Mengen der Form $A \times B$ geschrieben werden kann.

Hier bezeichnet $M \times N$ das kartesische Produkt der Mengen M und N, d. h.

$$M\times N=\{(x,y)\mid x\in M,y\in N\}.$$

Hinweis: Zeichnen Sie eine Skizze (z. B. mit Teilmengen von \mathbb{R}), die die Fragestellungen veranschaulicht.

Aufgabe 2

Gegeben seien Mengen A, B, C und Abbildungen $f: A \to B$ und $g: B \to C$. Die Abbildung f heißt **injektiv**, falls für alle $x, x' \in A$ gilt: wenn $x \neq x'$, dann auch $f(x) \neq f(x')$. Die Abbildung f heißt **surjektiv**, falls zu jedem $g \in B$ ein $g \in A$ existiert mit $g \in A$ existie

- (a) Sind f und g injektiv, so auch die Komposition $g \circ f : A \to C$.
- (b) Ist $g \circ f$ injektiv, so auch f.
- (c) Ist $g \circ f$ injektiv und f surjektiv, so ist g injektiv.
- (d) Zeigen Sie durch ein Beispiel, daß die Bedingung "f ist surjektiv" in (c) nicht weggelassen werden kann.

bitte wenden

Aufgabe 3

Es seien M, N Mengen und $f: M \to N$ eine Abbildung. Weiter seien A und B Teilmengen von M, sowie C und D Teilmengen von N. Beweisen oder widerlegen Sie (durch ein Gegenbeispiel) die folgenden Aussagen:

- (a) $f(A \cup B) = f(A) \cup f(B)$
- (b) $f(A \cap B) = f(A) \cap f(B)$
- (c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- (d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$

Hier bezeichnet z. B. $f^{-1}(C)$ das Urbild von C unter der Abbildung f, also

$$f^{-1}(C) = \{ x \in M \mid f(x) \in C \}.$$

* (e) Geben Sie für die falschen Aussagen an, durch welche der Mengeninklusionen ⊂ oder ⊃ das Gleichheitszeichen ersetzt werden muß, um eine wahre Aussage zu erhalten. Beweisen Sie diese.

Aufgabe 4

Formulieren Sie die folgenden Aussagen mittels der Quantoren \forall und \exists . Negieren Sie dann die Aussagen formal. Übersetzen Sie diese negierten Aussagen zurück in "Umgangssprache". Hier ist $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.

- (a) Zu jedem $x_0 \in I$ und jedem $\varepsilon > 0$ gibt es ein $\delta > 0$ derart, daß für alle $x \in I$ mit $|x x_0| < \delta$ gilt, daß $|f(x) f(x_0)| < \varepsilon$.
- (b) Zu jedem $\varepsilon > 0$ gibt es ein $\delta > 0$ derart, daß für jedes $x_0 \in I$ und jedes $x \in I$ mit $|x x_0| < \delta$ gilt, daß $|f(x) f(x_0)| < \varepsilon$.

Bemerkung: Hier handelt es sich um die Definition von Stetigkeit bzw. gleichmäßiger Stetigkeit, die wir später im Detail kennenlernen werden.

* Knobelaufgabe

Hier ist eine Liste mit fünf Aussagen, die sich aufeinander beziehen. Welche dieser Aussagen sind wahr, welche sind falsch?

- (i) Genau eine Aussage auf dieser Liste ist falsch.
- (ii) Genau zwei Aussagen auf dieser Liste sind falsch.
- (iii) Genau drei Aussagen auf dieser Liste sind falsch.
- (iv) Genau vier Aussagen auf dieser Liste sind falsch.
- (v) Genau fünf Aussagen auf dieser Liste sind falsch.