Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16 P. Albers, K. Halupczok Sheet Nr. 1

Hand in by Thursday, October 29, 2015 at 08:30 in the corresponding mail-box in the Hörsaalgebäude (numbers of the mail-boxes of the exercise groups on the web-page of the course).

Important notes:

- Some of the concepts and notations on this exercise sheet will be clarified for the first time in the next lecture.
- On the majority of exercise sheets you will find bonus questions. They are marked by an *. With these questions you can collect extra points.

Question 1

Let M, N, M', N' be sets. Show through an example that the set

$$(M \times N) \setminus (M' \times N')$$

is in general different from the set

$$(M \setminus M') \times (N \setminus N').$$

Show, on the other hand, that $(M \times N) \setminus (M' \times N')$ can always be described as the union of two sets of the form $A \times B$.

Here $M \times N$ denotes the **Cartesian product** of the sets M and N, i.e.

$$M \times N = \{ (x, y) \mid x \in M, y \in N \}.$$

Hint: Draw a schematic picture (e.g. with subsets of \mathbb{R}), which illustrates the assignment.

Question 2

Consider sets A, B, C and maps $f : A \to B, g : B \to C$. The map f is called **injective**, if for all $x, x' \in A$ the following statement holds: if $x \neq x'$, then also $f(x) \neq f(x')$. The map f is called **surjective**, if for every $y \in B$, there exists an $x \in A$ with f(x) = y. Analogue definitions apply to g. Show that:

- (a) If f and g are injective, so is also the composition $g \circ f : A \to C$.
- (b) If $g \circ f$ is injective, so is also f.
- (c) If $g \circ f$ is injective and f is surjective, then g is injective.
- (d) Show through an example that the condition "f is surjective" in (c) cannot be dropped.

please turn over

Question 3

Let M, N be sets and $f : M \to N$ be a map. Moreover, let A and B be subsets of M, and let C and D be subsets of N. Prove or disprove (through a counterexample) the following statements:

- (a) $f(A \cup B) = f(A) \cup f(B)$
- (b) $f(A \cap B) = f(A) \cap f(B)$
- (c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- (d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$

Here, for instance, $f^{-1}(C)$ denotes the pre-image (also called inverse image) of C under the map f, namely the set

$$f^{-1}(C) = \{ x \in M \mid f(x) \in C \}.$$

* (e) For the false statements indicate which inclusion symbol must replace the equality symbol, in order to get a true statement. Then give a proof of these corrected statements.

Question 4

Formulate the following propositions using the quantifiers \forall and \exists . Then write down the formal negation of such propositions. Translate these negated proposition back to "colloquial language". Here $I \subset \mathbb{R}$ is an interval and $f: I \to \mathbb{R}$ is a function.

- (a) For every $x_0 \in I$ and every $\varepsilon > 0$, there is a $\delta > 0$ such that for all $x \in I$ with $|x x_0| < \delta$, we have that $|f(x) f(x_0)| < \varepsilon$.
- (b) For every $\varepsilon > 0$, there is a $\delta > 0$ such that for every $x_0 \in I$ and every $x \in I$ with $|x x_0| < \delta$, we have that $|f(x) f(x_0)| < \varepsilon$.

Remark: Here we are dealing with the definition of **continuity** and **uniform continuity** respectively, which we will get to know in detail later on.

* Bonus question

Here is a list of five propositions, which refer to each other. Which of these propositions are true, which are false?

- (i) Exactly one proposition from this list is false.
- (ii) Exactly two propositions from this list are false.
- (iii) Exactly three propositions from this list are false.
- (iv) Exactly four propositions from this list are false.
- (v) Exactly five propositions from this list are false.