Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16
 P. Albers, K. Halupczok
 Sheet Nr. 2

Hand in by Thursday, November 5, 2015 at 08:30 in the corresponding mail-box in the Hörsaalgebäude (numbers of the mail-boxes of the exercise groups on the web-page of the course).

Question 1

If $n, k \in \mathbb{N}$ and $1 \leq k \leq n$, let $M(n, k)$ be the number of different ways to choose k numbers in $\{1, \ldots, n\}$ in such a way that any two of the k numbers are not contiguous. (Thus, for instance, the choice $\{1,3,4,8\}$ is forbidden, as 3 and 4 are contiguous.)
(a) Show that for all $n, k \in \mathbb{N}$ with $2 \leq k \leq n$ the following equality holds:

$$
M(n+1, k)=M(n, k)+M(n-1, k-1) .
$$

Hint: divide the subsets of $\{1, \ldots, n\}$ of k elements into two groups: those which contain the element $n+1$ and those which do not contain it.
(b) Prove, making use of mathematical induction, that $M(n, k)=\binom{n-k+1}{k}$ for all $n, k \in \mathbb{N}$ with $1 \leq k \leq n$.

Question 2

Show, using mathematical induction, that for all $n \in \mathbb{N}$ there holds:
(a) $(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$ for all $x \in \mathbb{R}$,
(b) $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$.

Question 3

Let $x \in \mathbb{R} \backslash\{1\}$ and let $\ell, n \in \mathbb{N}$. Derive a formula for $\sum_{k=\ell}^{n} x^{k}$ in three different ways, namely
(a) by reduction to $x^{\ell} \cdot \sum_{k=\ell}^{n} x^{k-\ell}$,
(b) by reduction to $\sum_{k=0}^{n-\ell} x^{k+\ell}$,
(c) by using $\sum_{k=\ell}^{n} x^{k}=\sum_{k=0}^{n} x^{k}-\sum_{k=0}^{\ell-1} x^{k}$.

Question 4

We want to prove that all natural numbers are equal, e. g. $3=7$. To this purpose let us define for $a, b \in \mathbb{N}$ the maximum $\max (a, b)$ as the largest of the two numbers a, b. For $a=b$ we have $\max (a, b):=a=b$. Let \mathcal{A}_{n} be the proposition: "If $a, b \in \mathbb{N}$ with $\max (a, b)=n$, then $a=b$.".
(i) Base case: \mathcal{A}_{1} is true, since $a=b=1$ implies $\max (a, b)=1$.
(ii) Inductive step: Let us suppose that \mathcal{A}_{n} is true for a particular $n \in \mathbb{N}$. Let $a, b \in \mathbb{N}$ with $\max (a, b)=n+1$. Let us set $\alpha=a-1, \beta=b-1$. Then we have $\max (\alpha, \beta)=n$ and, therefore, $\alpha=\beta$, as \mathcal{A}_{n} holds true. This implies $a=b$ and, as a consequence, also \mathcal{A}_{n+1} holds true.

Let now $a, b \in \mathbb{N}$ be arbitrary, $r:=\max (a, b)$. Since \mathcal{A}_{n} is true for all $n \in \mathbb{N}$, in particular \mathcal{A}_{r} is true and, therefore, $a=b$. Where is the fallacy in the argument?

* Bonus question

The induction method in Question 2 (b) has clearly the disadvantage that one has to know in advance the formula for the sum, in order to prove it. Derive the formula $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ of the "small Gauß" and the formula in Question 2 (b) using the following pictures.

* Puzzle

Let a regular polygon with n sides be given. How many are the triangles, whose vertices are also vertices of the polygon, but whose sides are not sides of the polygon? For example, for $n=7$ there are seven such triangles.

