Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16
 P. Albers, K. Halupczok

Hand in by Thursday, November 19, 2015 at 08:30 in the mail-box in the Hörsaal-gebäude.

Question 1

For which $x \in \mathbb{R}$ the following inequalities are true?
(a) $\left|x^{2}-1\right|<2 x$,
(b) $\frac{|x-3|}{1-|x-1|}<1$ for $x \neq 0,2$.

Write your answer as a union of real intervals and justify it rigorously.

Question 2

Do the following subsets of \mathbb{R} possess a supremum, an infimum, a maximum or a minimum, respectively? Justify carefully your answer and compute explicitly these quantities in the cases where they exist.
(a) $\left\{\left.\frac{|x|}{1+|x|} \right\rvert\, x \in \mathbb{R}\right\}$
(c) $\left\{x+\frac{1}{x} \left\lvert\, \frac{1}{2}<x \leq 2\right.\right\}$
(b) $\left\{\left.\frac{x}{1+x} \right\rvert\, x>-1\right\}$
(d) $\left\{\left.\frac{1}{(-3)^{m}}+\frac{n}{2 n-1} \right\rvert\, m \in \mathbb{N}_{0}, n \in \mathbb{N}\right\}$

Question 3

Let $A, B \subset \mathbb{R}$ be two non-empty subsets of \mathbb{R} bounded from above. Show that the set

$$
A+B:=\{x+y \mid x \in A, y \in B\}
$$

is also bounded from above and that the following relation holds

$$
\sup (A+B)=\sup (A)+\sup (B)
$$

Question 4

(a) Let $\ell, k \in \mathbb{N}_{0}$ and $A_{0}, \ldots, A_{\ell}, B_{0}, \ldots, B_{k} \in \mathbb{R}$. Let also $a_{n}:=A_{\ell} n^{\ell}+A_{\ell-1} n^{\ell-1}+\cdots+A_{0}$ and $b_{n}:=B_{k} n^{k}+B_{k-1} n^{k-1}+\cdots+B_{0}$ for all $n \in \mathbb{N}$. Let us assume in addition that $A_{\ell}, B_{k} \neq 0$.
Show that the sequence $\left(\frac{a_{n}}{b_{n}}\right)_{n \in \mathbb{N}}$ converge if and only if $k \geq \ell$ and that in this case

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}= \begin{cases}\frac{A_{\ell}}{B_{\ell}}, & \text { falls } k=\ell, \\ 0, & \text { falls } k>\ell\end{cases}
$$

(b) Let us denote by i the imaginary unit in \mathbb{C}. Determine whether the two sequences

$$
i^{n}+\frac{1}{n} \quad \text { und } \quad \sqrt{n+1}-\sqrt{n}
$$

converge or not and compute the value of the limit, if it exists.

* Bonus question

Construct an explicit bijection between the open real interval $(0,1)$ and \mathbb{R}.
Note: In your construction you are not allowed to use any function that was not discussed in the lectures, such as for example the function arctan.

* Puzzle

(a) The "Hilbert" Hotel has a countably infinite set of rooms. At the moment of your arrival at the hotel the rooms are unfortunately all already occupied. Nevertheless the hotel receptionist finds a room for you by cleverly redistributing the guests in such a way that no guest has to leave the hotel or has to share the room with someone else. How is that possible?
(b) Now also a couch of Canto(u)rs arrives with a countably infinite set of passengers. Can these guests be accommodated, as well?

