Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16 P. Albers, K. Halupczok Sheet Nr. 6

Hand in by Thursday, December 3, 2015 at 08:30 in the mail-box in the Hörsaal-gebäude.

Question 1

Let $(a_n)_{n \in \mathbb{N}}$ be some enumeration of $(0,1) \cap \mathbb{Q}$. Show that $\limsup_{n \to \infty} a_n = 1$ and $\liminf_{n \to \infty} a_n = 0$ by checking the corresponding definitions. Moreover, exhibit a concrete sub-sequence with limit 1 and a concrete sub-sequence with limit 0.

Question 2

Show the following characterization of the limit inferior:

We have $\liminf_{n \to \infty} a_n = b \in \mathbb{R}$ if and only if for all $\varepsilon > 0$ it holds:

- i) $a_n > b \varepsilon$ for all but finitely many $n \in \mathbb{N}$, and
- ii) $a_n < b + \varepsilon$ for infinitely many $n \in \mathbb{N}$.

Hint: This statement is Part 2) from Theorem 10 in the lectures. Prove it following the argument used in Part 1) of the theorem and filling in the missing steps.

Question 3

Let $(a_n)_{n \in \mathbb{N}}$ be a bounded real sequence. Prove the following statements:

- (a) $\liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n$,
- (b) $\liminf_{n \to \infty} a_n$ and $\limsup_{n \to \infty} a_n$ are accumulation points of the sequence,
- (c) $\limsup_{n \to \infty} a_n = \sup\{c \in \mathbb{R} \mid c \text{ is an accumulation point of } (a_n)_{n \in \mathbb{N}}\}.$

(A corresponding statement holds for $\liminf_{n \to \infty} a_n$, but you do not need to prove it here.)

Question 4

Study the continuity of the following functions and prove your assertion:

(a)
$$f_1 : \mathbb{R} \to \mathbb{R}, \quad f_1(x) := \begin{cases} 1, & \text{if } x \le 1, \\ 0, & \text{if } x > 1. \end{cases}$$

(b)
$$f_2 : \mathbb{R} \setminus \{1\} \to \mathbb{R}, \quad f_2(x) := \begin{cases} 1, & \text{if } x \le 1, \\ 0, & \text{if } x > 1. \end{cases}$$

(c) $f_3 : \mathbb{R} \to \mathbb{R}, \quad f_3(x) := |x|.$

please turn over

* Bonus question

A function $f : \mathbb{R} \to \mathbb{R}$ is called *monotone increasing*, if for all $x, y \in \mathbb{R}$ the implication $x \leq y \implies f(x) \leq f(y)$ holds true.

- (a) Let $f : \mathbb{R} \to \mathbb{R}$ be monotone increasing and $M \subset \mathbb{R}$ be bounded from above. Show that also f(M) is bounded from above and that $\sup(f(M)) \leq f(\sup(M))$ holds.
- (b) Exhibit a monotone increasing function $g : \mathbb{R} \to \mathbb{R}$ and a set $M \subset \mathbb{R}$ bounded from above such that $\sup(g(M)) < g(\sup(M))$ holds.
- (c) Exhibit a function $h : \mathbb{R} \to \mathbb{R}$ and a set $M \subset \mathbb{R}$ bounded from above such that h(M) is bounded from above, but $\sup(h(M)) > h(\sup(M))$ holds.

* Puzzle

Let $D \subset \mathbb{R}$. We call $f: D \to D$ a *contraction*, if |f(x) - f(y)| < |x - y| holds, for all $x, y \in D$ with $x \neq y$.

Lipschitz-continuous functions $f: D \to D$ with Lipschitz constant L < 1 are contractions. Show with an example that the converse is not necessarily true.