Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16
 P. Albers, K. Halupczok

Question 1

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be some enumeration of $(0,1) \cap \mathbb{Q}$. Show that $\limsup _{n \rightarrow \infty} a_{n}=1$ and $\liminf _{n \rightarrow \infty} a_{n}=0$ by checking the corresponding definitions. Moreover, exhibit a concrete sub-sequence with limit 1 and a concrete sub-sequence with limit 0 .

Question 2

Show the following characterization of the limit inferior:
We have $\liminf _{n \rightarrow \infty} a_{n}=b \in \mathbb{R}$ if and only if for all $\varepsilon>0$ it holds:
i) $a_{n}>b-\varepsilon$ for all but finitely many $n \in \mathbb{N}$, and
ii) $a_{n}<b+\varepsilon$ for infinitely many $n \in \mathbb{N}$.

Hint: This statement is Part 2) from Theorem 10 in the lectures. Prove it following the argument used in Part 1) of the theorem and filling in the missing steps.

Question 3

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a bounded real sequence. Prove the following statements:
(a) $\liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n}$,
(b) $\liminf _{n \rightarrow \infty} a_{n}$ and $\limsup _{n \rightarrow \infty} a_{n}$ are accumulation points of the sequence,
(c) $\limsup _{n \rightarrow \infty} a_{n}=\sup \left\{c \in \mathbb{R} \mid c\right.$ is an accumulation point of $\left.\left(a_{n}\right)_{n \in \mathbb{N}}\right\}$.
(A corresponding statement holds for $\liminf _{n \rightarrow \infty} a_{n}$, but you do not need to prove it here.)

Question 4

Study the continuity of the following functions and prove your assertion:
(a) $f_{1}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{1}(x):= \begin{cases}1, & \text { if } x \leq 1, \\ 0, & \text { if } x>1 .\end{cases}$
(b) $f_{2}: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R}, \quad f_{2}(x):= \begin{cases}1, & \text { if } x \leq 1, \\ 0, & \text { if } x>1 .\end{cases}$
(c) $f_{3}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{3}(x):=|x|$.

* Bonus question

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called monotone increasing, if for all $x, y \in \mathbb{R}$ the implication $x \leq y \Longrightarrow f(x) \leq f(y)$ holds true.
(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be monotone increasing and $M \subset \mathbb{R}$ be bounded from above. Show that also $f(M)$ is bounded from above and that $\sup (f(M)) \leq f(\sup (M))$ holds.
(b) Exhibit a monotone increasing function $g: \mathbb{R} \rightarrow \mathbb{R}$ and a set $M \subset \mathbb{R}$ bounded from above such that $\sup (g(M))<g(\sup (M))$ holds.
(c) Exhibit a function $h: \mathbb{R} \rightarrow \mathbb{R}$ and a set $M \subset \mathbb{R}$ bounded from above such that $h(M)$ is bounded from above, but $\sup (h(M))>h(\sup (M))$ holds.

* Puzzle

Let $D \subset \mathbb{R}$. We call $f: D \rightarrow D$ a contraction, if $|f(x)-f(y)|<|x-y|$ holds, for all $x, y \in D$ with $x \neq y$.
Lipschitz-continuous functions $f: D \rightarrow D$ with Lipschitz constant $L<1$ are contractions. Show with an example that the converse is not necessarily true.

