Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16
 P. Albers, K. Halupczok

Hand in by Thursday, December 10, 2015 at 08:30 in the mail-box in the Hörsaal-gebäude.

Question 1

(a) Construct a function $f: D \rightarrow \mathbb{C}, D \subset \mathbb{C}$, and a convergent sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset D$ with limit $x_{0} \in D$ in such a way that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$, but f is not continuous at x_{0}. Why this does not contradict the continuity criterion given in terms of sequences, which was proven in the lectures?
(b) Determine whether the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=\left\{\begin{array}{ll}
x \sin \left(\frac{1}{x}\right), & x \neq 0, \\
0, & x=0,
\end{array} \quad g(x)= \begin{cases}\sin \left(\frac{1}{x}\right), & x \neq 0, \\
0, & x=0\end{cases}\right.
$$

are continuous at $x_{0}=0$.

Question 2

Reminder: A function $f: D \rightarrow \mathbb{C}, D \subset \mathbb{C}$, is called continuous exactly when the following statement holds:

$$
\forall x_{0} \in D \forall \varepsilon>0 \exists \delta=\delta\left(x_{0}, \varepsilon\right)>0 \forall x \in D:\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
$$

If the δ in the statement does not depend on x_{0}, we call the function uniformly continuous.
Show that: The function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}, f(x):=\sqrt{x}$, is uniformly continuous, but the function $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}, f(x):=\frac{1}{x}$ it is not.

Question 3

Let $M \subset \mathbb{R}^{n}$ be a non-empty set. Show that:
(a) The set $\stackrel{\circ}{M}=M \backslash \partial M$ is open.
(b) For every open set U with $U \subset M$, there holds $U \subset M \backslash \partial M=\stackrel{\circ}{M}$.
(c) It holds $\stackrel{\circ}{M}=\bigcup\left\{U \subset \mathbb{R}^{n} \mid U \subset M\right.$ and U open $\}$.

Remark (not to be proven): Analogously we have:
(a) $\bar{M}=M \cup \partial M$ is closed,
(b) A closed and $M \subset A \Rightarrow \bar{M} \subset A$,
(c) $\bar{M}=\bigcap\left\{A \subset \mathbb{R}^{n} \mid M \subset A\right.$ and A closed $\}$.

Question 4

Find the boundary ∂M of the following subsets M of \mathbb{R}^{2} and determine which M are open and which are closed.
(a) $M_{1}=B_{1}((0,0)) \backslash\{(0,0)\}$
(b) $M_{2}=[1,2] \times[3,4)$
(c) $M_{3}=\left\{x \in[1,2] \times[3,4] \mid x \in \mathbb{Q}^{2}\right\}$
(d) $M_{4}=[1,2) \times\{0\}$

* Nikolaus Question

Nikolaus hangs spheres (0) and tinsels $(-)$ to a subset $T \subset \mathbb{R}^{2}$ so that the sets

$$
\begin{array}{lllllll}
T, & \stackrel{\circ}{T}, & \bar{T}, & \stackrel{\circ}{T}, & \stackrel{\circ}{T}, & \stackrel{\circ}{\bar{T}}, & \stackrel{\circ}{\top} \\
\hline
\end{array}
$$

are all distinct. Exhibit explicitly one such a set $T \subset \mathbb{R}^{2}$.

