Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16 P. Albers, K. Halupczok Sheet Nr. 7

Hand in by Thursday, December 10, 2015 at 08:30 in the mail-box in the Hörsaal-gebäude.

Question 1

- (a) Construct a function $f: D \to \mathbb{C}$, $D \subset \mathbb{C}$, and a convergent sequence $(x_n)_{n \in \mathbb{N}} \subset D$ with limit $x_0 \in D$ in such a way that $\lim_{n \to \infty} f(x_n) = f(x_0)$, but f is not continuous at x_0 . Why this does not contradict the continuity criterion given in terms of sequences, which was proven in the lectures?
- (b) Determine whether the functions $f, g : \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0, \end{cases} \qquad g(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

are continuous at $x_0 = 0$.

Question 2

Reminder: A function $f: D \to \mathbb{C}, D \subset \mathbb{C}$, is called *continuous* exactly when the following statement holds:

$$\forall x_0 \in D \ \forall \varepsilon > 0 \ \exists \delta = \delta(x_0, \varepsilon) > 0 \ \forall x \in D : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

If the δ in the statement does not depend on x_0 , we call the function uniformly continuous.

Show that: The function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$, $f(x) := \sqrt{x}$, is uniformly continuous, but the function $f : \mathbb{R}_{>0} \to \mathbb{R}$, $f(x) := \frac{1}{x}$ it is not.

Question 3

Let $M \subset \mathbb{R}^n$ be a non-empty set. Show that:

- (a) The set $\overset{\circ}{M} = M \setminus \partial M$ is open.
- (b) For every open set U with $U \subset M$, there holds $U \subset M \setminus \partial M = \overset{\circ}{M}$.
- (c) It holds $\check{M} = \bigcup \{ U \subset \mathbb{R}^n \mid U \subset M \text{ and } U \text{ open} \}.$

Remark (not to be proven): Analogously we have:

- (a) $\overline{M} = M \cup \partial M$ is closed,
- (b) A closed and $M \subset A \Rightarrow \overline{M} \subset A$,
- (c) $\overline{M} = \bigcap \{ A \subset \mathbb{R}^n \mid M \subset A \text{ and } A \text{ closed} \}.$

Question 4

Find the boundary ∂M of the following subsets M of \mathbb{R}^2 and determine which M are open and which are closed.

- (a) $M_1 = B_1((0,0)) \setminus \{(0,0)\}$
- (b) $M_2 = [1, 2] \times [3, 4)$
- (c) $M_3 = \{x \in [1,2] \times [3,4] \mid x \in \mathbb{Q}^2\}$
- (d) $M_4 = [1, 2) \times \{0\}$

* Nikolaus Question Nikolaus hangs spheres (\circ) and tinsels (-) to a subset $T \subset \mathbb{R}^2$ so that the sets

$$T, \quad \overset{\circ}{T}, \quad \overline{T}, \quad \overset{\circ}{\overline{T}}, \quad \overset{\overline{\circ}}{\overline{T}}, \quad \overset{\overline{\circ}}{\overline{T}}, \quad \overset{\overline{\circ}}{\overline{T}}, \quad \overset{\circ}{\overline{T}},$$

are all distinct. Exhibit explicitly one such a set $T \subset \mathbb{R}^2$.