Question 1

Determine which of the following subsets K_{1}, \ldots, K_{4} of \mathbb{R} are compact.
(a) $K_{1}:=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$
(b) $K_{2}:=f([0,1])$ under the map $f: \mathbb{R} \backslash\{-3\} \rightarrow \mathbb{R}, f(x):=\frac{x^{2}-6 x+7}{x+3}$
(c) $K_{3}:=\left\{\left.\frac{1}{x} \right\rvert\, x \in(0,1]\right\}$
(d) $K_{4}:=\bigcap_{n \in \mathbb{N}}\left[-\frac{1}{n}, 1\right]$

Question 2

Give (possibly distinct) examples of a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(a) the pre-image of a connected set is not connected,
(b) the image of an open set is not open,
(c) the image of a closed set is not closed,
(d) the pre-image of a compact set is not compact.

Question 3

(a) Let $d \in \mathbb{N}$ be fixed and for all $n \in \mathbb{N}$ let $K_{n} \subset \mathbb{R}^{d}$ be a compact non-empty set such that $K_{n+1} \subset K_{n}$ for all $n \in \mathbb{N}$. Show that $\bigcap_{n \in \mathbb{N}} K_{n} \neq \emptyset$ holds.
(b) Construct for some $d \in \mathbb{N}$ and for all $n \in \mathbb{N}$ a closed non-empty set $A_{n} \subset \mathbb{R}^{d}$ in such a way that $A_{n+1} \subset A_{n}$ for all $n \in \mathbb{N}$, but $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$ holds.

Question 4

Prove Lemma 4': Let $n \in \mathbb{N}$ and $D \subset \mathbb{R}^{n}$ be given. Then the following statement holds:

$$
M \subset D \text { open in } D \Longleftrightarrow \forall x \in M \exists r>0: B_{r}(x) \cap D \subset M .
$$

* Bonus question

Let us define $C_{0}:=[0,1]$, and

$$
C_{n}=\bigcup_{k=1}^{2^{n}} I_{n, k},
$$

where the $I_{n, k}$ are 2^{n} pairwise disjoint closed intervals of length 3^{-n} such that C_{n+1} is the union of all disjoint closed intervals $I_{n+1,2 k-1}, I_{n+1,2 k}$ obtained by deleting the open middle third from $I_{n, k}$ of C_{n}. Namely,

$$
C_{n+1}:=\bigcup_{k=1}^{2^{n}}\left(I_{n+1,2 k-1} \cup I_{n+1,2 k}\right)=\bigcup_{k=1}^{2^{n+1}} I_{n+1, k} .
$$

Sketch:

In this way we construct recursively a sequence C_{0}, C_{1}, \ldots of subsets of \mathbb{R}, and we define $C:=\bigcap_{n \in \mathbb{N}} C_{n}$. This set is called Cantor Set.

Show that:
(a) $C=\partial C$,
(b) C is uncountable
(for instance by giving a bijection between C and the set of all 0 -1-sequences),
(c) every point of C is an accumulation point of C,
(d) the total length of C_{n} goes to 0 as $n \rightarrow \infty$.

