Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16 P. Albers, K. Halupczok Sheet Nr. 9

Hand in by Thursday, January 14, 2016 at 08:30 in the mail-box in the Hörsaal-gebäude.

Question 1

Justify why the function

$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
$$x \mapsto x^{p/q}.$$

for $p \in \mathbb{Z}, q \in \mathbb{N}$, is differentiable and determine its derivative

- (a) by means of the expression $f(x) = (x^{1/q})^p$,
- (b) from the identity $(f(x))^q = x^p$.

Question 2

Show that the function

$$f: \mathbb{R} \to \mathbb{R},$$
$$x \mapsto \begin{cases} x^2 \cos(1/x), & \text{ for } x \neq 0, \\ 0, & \text{ for } x = 0, \end{cases}$$

is differentiable but not continuously differentiable, i.e. the derivative is not a continuous function. (During the lectures we are going to show that sin and \cos are differentiable functions on \mathbb{R} with $\sin' = \cos$ and $\cos' = -\sin$.)

Question 3

- (a) Draw a sketch of the graphs of the following functions:
 - (i) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}, x \mapsto \sin x,$
 - (ii) $[0,\pi] \to \mathbb{R}, x \mapsto \cos x,$
 - (iii) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x := \frac{\sin x}{\cos x}.$

What is the image of these functions?

(b) Justify why the inverse functions

$$\arcsin := \sin^{-1}, \ \arccos := \cos^{-1}, \ \arctan := \tan^{-1}$$

exist over such images. Here, for instance, $\arcsin y$ is the angle x (in radians) such that $\sin x = y$. Remember that the measure of an angle in radians is, by definition, the length of the corresponding arc on the unit circle.

- (c) Determine the derivative of the tangent function.
- (d) Determine the derivative of the functions arcsin, arccos and arctan.

Question 4

Let $I \subset \mathbb{R}$ be an interval and let $f : I \to \mathbb{R}$ be continuous. Show that f is injective if and only if f is strictly monotone.