Exercises for Analysis I, WWU Münster, Mathematisches Institut, WiSe 2015/16
 P. Albers, K. Halupczok

Hand in by Thursday, January 28, 2016 at 08:30 in the mail-box in the Hörsaal-gebäude.

Question 1

Let $a>0$ be given. Prove the following properties of the generalized exponential function with base a :
(a) $a^{x}: \mathbb{R} \rightarrow \mathbb{R}^{+}$is continuous.
(b) $a^{x+y}=a^{x} a^{y}$ for all $x, y \in \mathbb{R}$.
(c) $a^{\frac{p}{q}}=\sqrt[q]{a^{p}}$ for all $q \in \mathbb{N}, q \geq 2, p \in \mathbb{Z}$.
(d) $\left(a^{x}\right)^{y}=a^{x y}$ for all $x, y \in \mathbb{R}$.
(e) $a^{x} b^{x}=(a b)^{x}$ for all $x \in \mathbb{R}, b>0$.
(f) $\frac{1}{a^{x}}=a^{-x}$ for all $x \in \mathbb{R}$.

Show, moreover, that the function a^{x} is differentiable and compute its derivative.

Question 2

Let $\log _{a}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be the logarithm to base a, i. e. the inverse function of $a^{x}: \mathbb{R} \rightarrow \mathbb{R}^{+}, a>0$.
(a) Prove that there holds $\log _{a}(x)=\frac{\log x}{\log a}$, for all $x>0$.
(b) Determine the derivative of $\log _{a}(x)$ in two ways. First, by applying the theorem about the derivative of the inverse function. Second, by differentiating the equation in (a).

Question 3

Show that the identity id : $\mathbb{R} \rightarrow \mathbb{R}, x \mapsto x$ is integrable on $[0,1]$ and there holds $\int_{0}^{1} x d x=\frac{1}{2}$.
Hint: Prove that for all $\varepsilon>0$ there exists a partition of the form

$$
Z_{n}=\left(0=x_{0}, \frac{1}{n}, \frac{2}{n}, \ldots, 1=x_{n}\right)
$$

with $O\left(Z_{n}, \mathrm{id}\right)-U\left(Z_{n}, \mathrm{id}\right)<\varepsilon$.
Remark: The map id is integrable on all intervals $[a, b]$ and there holds $\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}$.

Question 4

Use the Intermediate Value Theorem for continuous functions to show the following Mean Value Theorem of integral calculus: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there exists $c \in[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a) .
$$

