WITHOUT HANDING IN, Discussion with tutors by arrangement on January 11/12/13.

Question 1

Write the following subsets of \mathbb{R} as union of intervals:
(a) $A:=\{x \in \mathbb{R} ;|x+2|<|x+7|\}$,
(b) $B:=\left\{x \in \mathbb{R} ; \frac{x}{x+2}>\frac{x+3}{3 x+1}\right\}$,
(c) $C:=\left\{x \in \mathbb{R} ; \forall n \in \mathbb{N}: x^{n+1}+\frac{1}{x^{n+1}}>x^{n}+\frac{1}{x^{n}}\right\}$,
(d) $D:=\left\{\frac{x}{x+1} ; x \in \mathbb{R}, x>-1\right\}$.

Determine also the supremum/infimum/maximum/minimum of the sets A to D, when they exist.

Question 2

Let $x, y, z \in \mathbb{R}$. Show that:
(a) $|x+y+z| \leq|x|+|y|+|z|$
(b) $|x-y| \geq|x|-|y|$
(c) $x^{2}+y^{2}+z^{2} \geq x y+y z+z x$
(d) $3 \sqrt[3]{x y z} \leq x+y+z$, falls $x, y, z>0$

Question 3

(a) Show that for all $n \in \mathbb{N}$ the polynomial $x^{2 n-1}+1$ is divisible by $x+1$.
(b) Let A_{n} be the arithmetic mean of the binomial coefficients

$$
\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}
$$

Show that $\lim _{n \rightarrow \infty} \sqrt[n]{A_{n}}=2$ holds.

Question 4

Determine the limits of the sequences given below:

$$
\begin{aligned}
a_{n} & :=\frac{3 n^{2}-5 n}{6 n^{2}+3 n-2}, b_{n}:=\frac{n(n+2)}{n+1}-\frac{n^{3}}{n^{2}+1}, c_{n}:=\sqrt{n+2}-\sqrt{n}, \\
d_{n} & :=\left(\frac{2 n+1}{3 n-4}\right)^{4}, e_{n}:=\frac{1}{n}\left(g_{1}+\cdots+g_{n}\right) \text { with } g_{n}:=\frac{1}{2}\left(1+(-1)^{n}\right), \\
f_{n+1} & :=\frac{1}{2}\left(f_{n}+\frac{p}{f_{n}}\right) \text { with } p, f_{1}>0 .
\end{aligned}
$$

Question 5

Show that:
(a) Every convergent real sequence is bounded.
(b) For every convergent real sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ with limit value $A \neq 0$ there is an $N \in \mathbb{N}$ such that $\left|a_{n}\right|>A / 2$, for all $n \geq N$.
(c) Every convergent real sequence possesses either a maximum or a minimum, or both.
(d) For every real sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ the following statement holds: If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a null-sequence.

Question 6

Determine the biggest domain $D \subset \mathbb{R}$ such that the following formulae define a function $f: D \rightarrow \mathbb{R}$.
(a) $\sqrt{(-x+3)(2 x+4)}$,
(b) $(x-2)\left(x^{2}-4\right)^{-1}$,
(c) $\frac{\sin 3 x}{\cos 2 x}$,
(d) $2^{\sqrt{x^{2}-1}}$.

Question 7

Let $f: D \rightarrow \mathbb{R}$ be a function and let $a \in \mathbb{R}$ be such that $\lim _{x \rightarrow a} f(x)=B \in \mathbb{R} \backslash\{0\}$. Show that: There exists a $\delta>0$, so that $|f(x)|>\frac{1}{2} \cdot|B|$ holds for all $x \in D$ with $|x-a|<\delta$.

Question 8

For which values of the domain of definition are the following functions continuous?
(a) $f(x)=\frac{x}{x^{2}-1}$
(b) $f(x)=\frac{1+\cos x}{3+\sin x}$
(c) $f(x)=\frac{x-|x|}{x}$
(d) $f(x)= \begin{cases}\frac{x-|x|}{x}, & x<0 \\ 2, & x=0\end{cases}$
(e) $f(x)=\frac{x}{\sin x}$
(f) $f(x)=\frac{x}{\sin x}, f(0)=1$

Question 9

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}, a \in \mathbb{R}$ and suppose that the functions f / g and g are continuous at $x=a$. Show that then f is continuous at a, as well.

Question 10

(a) Construct a non-compact set $D \subset \mathbb{R}$ and an unbounded continuous function $f: D \rightarrow \mathbb{R}$.
(b) Construct a non-compact set $D \subset \mathbb{R}$ and a bounded continuous function $g: D \rightarrow \mathbb{R}$ that does not have a maximum.

