Abgabe: Freitag, 28. Oktober 2011, bis 12.00 Uhr in die jeweiligen Kästen

Aufgabe 5 - Präsenzaufgabe $(2+2 \ \ddot{\mathrm{U}}\mathrm{P})$:

(i) Bestimmen Sie Infimum und Supremum der Menge

$$M_1 := \{x \mid x \in \mathbb{R} \text{ mit } 1/2 < (x-1)^2 \le 2\}.$$

Hat M_1 ein Minimum oder ein Maximum?

(ii) Bestimmen Sie Infimum und Supremum der Menge

$$M_2 := \{ (-1)^n + \frac{1}{n} \mid n \in \mathbb{N}, n \ge 1 \}.$$

Hat M_2 ein Minimum oder ein Maximum?

Aufgabe 6 - Präsenzaufgabe (1+2+1 ÜP):

- (i) Zeigen Sie, daß Q nicht vollständig ist.
- (ii) Zeigen Sie: Die Teilmenge

$$\mathbb{Q}(\sqrt{2}) \,:=\, \left\{\, q \in \mathbb{R} \,\middle|\, q = a + b\sqrt{2} \;\; \text{mit} \; a, b \in \mathbb{Q} \;\; \right\} \;\subset\; \mathbb{R}$$

ist ein Unterkörper von \mathbb{R} .

(iii) Ist $\mathbb{Q}(\sqrt{2})$ angeordnet? Ist $\mathbb{Q}(\sqrt{2})$ vollständig? Begründen Sie Ihre Antworten.

Aufgabe 7 (4 $\ddot{\mathrm{U}}\mathrm{P}$):

Zeigen Sie, daß für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} k^{3} = \left(\sum_{k=1}^{n} k\right)^{2}.$$

Aufgabe 8 - Besprechung in der Zentralübung (4 ÜP):

Zeigen Sie: Die Menge $\mathbb{K}:=\big\{\,(a,b)\,\big|\,a,b\in\mathbb{R}\,\big\}$ mit den Verknüpfungen

$$(a_1, b_1) \oplus (a_2, b_2) := (a_1 + a_2, b_1 + b_2)$$

 $(a_1, b_1) \odot (a_2, b_2) := (a_1 a_2 - b_1 b_2, a_1 b_2 + a_2 b_1)$

ist ein Körper.