Abgabe: Freitag, 20. Januar 2012, bis 12.00 Uhr in die jeweiligen Kästen

Aufgabe 41 - Präsenzaufgabe (4 ÜP):

(a) Berechnen Sie die folgenden Riemann-Integrale.

(i)
$$\int_0^1 \sqrt{2x+3} \, dx$$
, (ii) $\int_{-1}^1 x e^{-x^2} \, dx$, (iii) $\int_0^{\pi/4} \frac{x}{\cos^2 x} \, dx$, (iv) $\int_1^e \frac{\log x}{x} \, dx$.

(b) Berechnen Sie die Ableitung F' der Funktion $F: \mathbb{R}_{\geq 0} \to \mathbb{R}$,

$$F(x) = \begin{cases} x\sqrt{x}\sin\left(\frac{1}{x}\right), & x > 0, \\ 0, & x = 0, \end{cases}$$

für x > 0, und es sei F'(0) := 0 gesetzt. Zeigen Sie, dass die Funktion F' auf keinem Intervall [0, b], b > 0, Riemann-integrierbar ist.

Aufgabe 42 (4 ÜP):

Die Funktionenfolge $f_n: \mathbb{R} \to \mathbb{R}$, $f_n(x) = nxe^{-nx^2}$ konvergiert auf keinem Intervall, das den Nullpunkt enthält, gleichmäßig. Auf jedem endlichen abgeschlossenen Intervall, das den Nullpunkt nicht enthält, liegt jedoch gleichmäßige Konvergenz vor.

Aufgabe 43 (4 $\ddot{\mathrm{U}}\mathrm{P}$):

Berechnen Sie für |x| < 1 die Summe der Reihen

$$\sum_{n=0}^{\infty} n^2 x^n \text{ und } \sum_{n=0}^{\infty} n^3 x^n.$$

Geben Sie auch jeweils die Ableitung und eine Stammfunktion an. Was sind die genauen Konvergenzbereiche? Untersuchen Sie dafür auch die Randpunkte der Konvergenzbereiche.

Aufgabe 44 - Besprechung in der Zentralübung (4 ÜP):

(a) Zeigen Sie den verallgemeinerten Mittelwertsatz:

Es seien $f, g : [a, b] \to \mathbb{R}$ stetig und in]a, b[differenzierbar. Weiter sei $g'(x) \neq 0$ für alle $x \in]a, b[$. Dann gibt es ein $c \in]a, b[$ mit

$$\alpha := \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Hinweis: Anwendung des Satzes von Rolle auf $h(x) = f(x) - \alpha(g(x) - g(a))$.

bitte wenden

(b) Zeigen Sie mithilfe von (a) die folgende Regel von de l'Hospital:

Seien $f, g:]a, b[\to \mathbb{R}$ zwei differenzierbare Funktionen, sei $g'(x) \neq 0$ für alle $x \in]a, b[$ und es gelte $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$. Dann gilt

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)},$$
 falls der rechte Limes existiert.

Letzte Aufgabe - (4 Bonus-ÜP):

Es seien $f_0, \ldots, f_{10} : \mathbb{R}_{>1} \to \mathbb{R}$ der Reihe nach definiert als

1,
$$\log(\log x)$$
, $\log x$, $e^{\sqrt{\log x}}$, x^a , x^b , e^x , x^x , $(x^x)^x$, $e^{(e^x)}$, $x^{(x^x)}$,

wobei 0 < a < b. Zeigen Sie: Für $i, k \in \{0, ..., 10\}$ mit i < k gilt

$$\lim_{x \to \infty} \frac{f_i(x)}{f_k(x)} = 0.$$

Hinweis: Die Regel von de l'Hospital gilt auch, falls $\lim_{x\to a+} f(x) = \lim_{x\to a+} g(x) \in \{\infty, -\infty\}$, sowie, falls der Grenzübergang $x\to a+$ durch $x\to\infty$ oder $x\to-\infty$ ersetzt wird. Verwenden Sie diese Regel hier (ohne Beweis).