Abschnitt 1 – Aufbau des Zahlensystems:

Aufgabe 1.1

- (a) Schreiben Sie die folgenden Teilmengen von \mathbb{R} als Vereinigung von Intervallen.
 - (i) $A := \{x \in \mathbb{R}; |x+2| < |x-5|\},\$
 - (ii) $B := \{ x \in \mathbb{R}; \ \frac{x}{x+2} > \frac{x+3}{3x+1} \},$
 - (iii) $C := \{ x \in \mathbb{R}; \ \forall n \in \mathbb{N} : \ x^{n+1} + \frac{1}{x^{n+1}} > x^n + \frac{1}{x^n} \},$
 - (iv) $D := \{ \frac{x}{1+x}; \ x \in \mathbb{R}, x > -1 \}.$
- (b) Bestimmen Sie auch Supremum/Infimum/Maximum/Minimum der Mengen A bis D, falls existent.

Aufgabe 1.2

(a) Seien $a, b, c \in \mathbb{R}_{>0}$ fest. Geben Sie (in Abhängigkeit von a, b, c) die Lösungsmenge der $x \in \mathbb{R}$ an, die die folgenden Gleichungen lösen.

$$a^{\log(x^b)} = c$$
, $x^x = 1$, $(\log(a))^x = b$, $\exp(cx)^a = 2^b$, $\log\left(\frac{a}{e^{x-c}}\right) = b$, $x^{2\log a} = 2^b$.

(b) Schreiben Sie die folgenden komplexen Zahlen in der Form a+ib, $a,b \in \mathbb{R}$, wobei $i^2=-1$. Berechnen Sie weiter das komplex Konjugierte, den Betrag, das multiplikativ Inverse sowie das Quadrat dieser komplexen Zahlen.

$$\frac{1}{1-i}$$
, $\frac{1-i}{1+i}$, $\frac{(1+2i)^2}{2+3i}$, $\frac{1+2i}{(2+3i)^2}$, $(\frac{4-i}{2+i})^2$.

Aufgabe 1.3

Seien $x, y, z \in \mathbb{R}$. Zeigen Sie:

- (a) $|x + y + z| \le |x| + |y| + |z|$, (b) $|x y| \ge |x| |y|$
- (c) $x^2 + y^2 + z^2 \ge xy + yz + zx$, (d) $3\sqrt[3]{xyz} \le x + y + z$, falls x, y, z > 0.

Aufgabe 1.4*

- (a) Seien x,y Unbestimmte. Zeigen Sie: Das Polynom $x^{2n-1}+y^{2n-1}$ ist für alle $n\in\mathbb{N}$ durch das Polynom x+y teilbar.
- (b) Zeigen Sie: Ist $x \in \mathbb{R} \setminus \{2k\pi; k \in \mathbb{Z}\}$, so ist

$$\sin(x) + \sin(2x) + \dots + \sin(nx) = \frac{\cos(\frac{x}{2}) - \cos((n + \frac{1}{2})x)}{2\sin(\frac{x}{2})}.$$

Hinweis: $2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y)$.

Abschnitt 2 – Folgen und Konvergenz:

Seite 2

Aufgabe 2.1

Bestimmen Sie die Grenzwerte der angegebenen Folgen:

(a)
$$a_n := \frac{3n^2 - 5n}{5n^2 + 6n - 2}$$
 (b) $b_n := \frac{n(n+2)}{n+1} - \frac{n^3}{n^2 - 1}$ (c) $c_n := \sqrt{n+1} - \sqrt{n}$

(a)
$$a_n := \frac{3n^2 - 5n}{5n^2 + 6n - 2}$$
 (b) $b_n := \frac{n(n+2)}{n+1} - \frac{n^3}{n^2 - 1}$ (c) $c_n := \sqrt{n+1} - \sqrt{n}$
(d) $d_n := \left(\frac{2n-1}{3n+4}\right)^4$ (e) $e_n := (1+n+n^2)^{1/n}$ (f) $f_n := \frac{h_1 + \dots + h_n}{n}$ mit $h_n := \frac{1}{2}(1+(-1)^n)$

(g)
$$(g_n)_{n\in\mathbb{N}}$$
 mit $g_{n+1}:=\frac{1}{2}(g_n+\frac{p}{g_n})$ und $p,g_1>0$

Aufgabe 2.2

Zeigen Sie:

- (a) Jede konvergente reelle Folge ist beschränkt.
- (b) Für jede konvergente Folge $(a_n)_{n\in\mathbb{N}}$ mit Grenzwert $A\neq 0$ gibt es ein $N\in\mathbb{N}$ mit $|a_n|>$ |A|/2 für alle $n \geq N$.
- (c) Jede konvergente reelle Folge besitzt entweder ein Maximum oder ein Minimum oder beides.

Aufgabe 2.3

Gegeben sei eine reelle Zahlenfolge $(u_n)_{n\in\mathbb{N}}$. Zeigen Sie: Gilt $\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|<1$, so ist $(u_n)_{n\in\mathbb{N}}$ eine Nullfolge.

Aufgabe 2.4*

Es sei A_n das arithmetische, und G_n das geometrischen Mittel der Binomialkoeffizienten

$$\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots, \binom{n}{n}.$$

Zeigen Sie, dass $\lim_{n\to\infty} \sqrt[n]{A_n} = 2$ und $\lim_{n\to\infty} \sqrt[n]{G_n} = \sqrt{e}$ ist.

Abschnitt 3 – Reihen:

Aufgabe 3.1

Testen Sie die folgenden Reihen auf Konvergenz:

(a)
$$\sum_{k=1}^{\infty} \left(\frac{k}{2k+1}\right)^k$$
 (b) $\sum_{k=1}^{\infty} \frac{k!}{k^2} 2^k$ (c) $\sum_{k=1}^{\infty} \frac{(k+1)^{k^2}}{k^{k^2} \cdot 2^k}$ (d) $\sum_{k=2}^{\infty} \frac{2^{k+1}}{5 \cdot 3^k}$ (e) $\sum_{k=1}^{\infty} \binom{2+k}{k}^{-1/k}$ (f) $\sum_{k=2}^{\infty} \frac{1}{k \log k}$

Aufgabe 3.2 Seite 3

- (a) Sind alle $a_n > 0$, so konvergiert die Reihe $\sum_{n=1}^{\infty} \frac{a_n}{1 + n^2 a_n}$.
- (b) Ist $(a_n)_{n\in\mathbb{N}}$ monoton wachsend, die $a_n > 0$, so konvergiert die Reihe $\sum_{n=1}^{\infty} \left(\frac{a_{n+1}}{a_n} 1\right)$ genau dann, wenn $(a_n)_{n\in\mathbb{N}}$ beschränkt ist.
- (c) Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Nullfolge. Dann gilt:

$$\sum_{n=1}^{\infty} a_n \text{ konvergent} \Rightarrow \sum_{n=1}^{\infty} \frac{a_n}{1 + na_n} \text{ konvergent}$$

Aufgabe 3.3

Für welche $x \in \mathbb{R}$ konvergieren die folgenden Reihen?

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1} \left(\frac{x+2}{x-1}\right)^n$$
, (b) $\sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n-1)}$.

Aufgabe 3.4*

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen. Zeigen Sie: Wenn die Folge $((a_1-a_n)+(a_2-a_n)+\cdots+(a_{n-1}-a_n))_{n\in\mathbb{N}}$ für $n\to\infty$ beschränkt bleibt, so braucht die Reihe $\sum_{n=1}^\infty a_n$ noch nicht zu konvergieren. Wenn aber die Bedingungen $a_1\geq a_2\geq a_3\geq\ldots$, $\lim_{n\to\infty}a_n=0$ hinzukommen, dann konvergiert die Reihe $\sum_{n=1}^\infty a_n$.

Abschnitt 4 – Funktionen und Grenzwerte:

Aufgabe 4.1

Geben Sie den größten Bereich für $D \subseteq \mathbb{R}$ an, so dass die folgenden Funktionsvorschriften eine Funktion $f: D \to \mathbb{R}$ definieren:

(a)
$$\sqrt{(-x+3)(2x+4)}$$
 (b) $(x-2)(x^2-4)$

(c)
$$\sin(3x)$$
 (d) $\log_{10}(x^3 - 3x^2 - 4x + 12)$

Aufgabe 4.2

Sei $f: D \to \mathbb{R}$ eine Funktion und $a \in \mathbb{R}$. Weiter sei $\lim_{x \to a} f(x) = B \in \mathbb{R} \setminus \{0\}$. Zeigen Sie: Es gibt ein $\delta > 0$, so dass $|f(x)| > \frac{1}{2} \cdot |B|$ für alle $x \in D$ mit $0 < |x - a| < \delta$ gilt.

Aufgabe 4.3

Sei $f(x) := \frac{3x + |x|}{7x - 5|x|}$, bestimmen Sie, falls existent, die folgenden Grenzwerte:

(a)
$$\lim_{x \to \infty} f(x)$$
 (b) $\lim_{x \to -\infty} f(x)$ (c) $\lim_{x \to 0+} f(x)$ (d) $\lim_{x \to 0-} f(x)$ (e) $\lim_{x \to 0} f(x)$

Aufgabe 4.4* Seite 4

Sei $f: \mathbb{R}_{>0} \to \mathbb{R}$ eine reelle Funktion und $a \in \mathbb{R}$.

(a) Wenn f im Intervall $0 < x \le 1$ monoton ist und $\int_0^1 x^a f(x) dx$ existiert, dann ist $\lim_{x\to 0} x^{a+1} f(x) = 0$.

(b) Wenn f für $x \ge 1$ monoton ist und $\int_1^\infty x^a f(x) dx$ existiert, dann ist $\lim_{x \to \infty} x^{a+1} f(x) = 0$.

Abschnitt 5 – Stetigkeit:

Aufgabe 5.1

Die Stetigkeit einer Funktion f kann man einerseits mit dem ε - δ -Kriterium und andererseits mit dem Folgenkriterium definieren, beide Aussagen sind äquivalent.

- (a) Sei $f: \mathbb{R} \to \mathbb{R}$, $f(x) := x^2$. Zeigen Sie mit dem ε - δ -Kriterium, dass f in 0 stetig ist.
- (b) Sei $f: \mathbb{R}_{>0} \to \mathbb{R}$, $f(x) := \frac{1}{x}$. Zeigen Sie mit Hilfe des Folgenkriteriums, dass f in 1 stetig ist.
- (c) Sei $f : \mathbb{R} \setminus \{0\} : \mathbb{R} \to \mathbb{R}$, $f(x) := \frac{1}{x}$. Zeigen Sie sowohl mit Hilfe des $\varepsilon \delta$ als auch mit dem Folgenkriterium, dass f in 0 nicht stetig fortsetzbar ist (d. h., man kann f(0) definieren, wie man will, f ist in 0 nicht stetig).

Aufgabe 5.2

Für welche Werte des Definitionsbereiches sind die folgenden Funktionen stetig?

(a)
$$f(x) = \frac{x}{x^2 - 1}$$
 (b) $f(x) = \frac{1 + \cos x}{3 + \sin x}$ (c) $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{2^n}$ (d) $f(x) = 10^{-1/(x-3)^2}$ (e) $f(x) = \begin{cases} 10^{-1/(x-3)^2}, & x \neq 3 \\ 0, & x = 3 \end{cases}$ (f) $f(x) = \frac{x - |x|}{x}$ (g) $f(x) = \begin{cases} \frac{x - |x|}{x}, & x < 0 \\ 2, & x = 0 \end{cases}$ (h) $f(x) = \frac{x}{\sin x}$ (i) $f(x) = \frac{x}{\sin x}$, $f(0) = 1$

Aufgabe 5.3

Seien $f, g : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}$ und seien die Funktionen f/g und g stetig in x = a. Zeigen Sie, dass dann auch f in a stetig ist.

Aufgabe 5.4*

Zeigen Sie: Die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x \cosh x + 1$ hat unendlich viele reelle Nullstellen. Für große x sind diese Nullstellen nahe bei denen von $\cos x$.

Bemerkung:
$$\cosh x := \frac{e^x + e^{-x}}{2}$$