Elementaren Zahlentheorie

Falko Lorenz, Karin Halupczok

WiSe 2014/15

Abgabetermin: Freitag, 05. Dezember 2014, bis 10:10 Uhr in die Briefkästen

Aufgabe 25:

(a) Gegeben $\alpha \in \mathbb{R}$ sowie eine natürliche Zahl d > 1. Mittels Kettenbruchentwicklung zeige man, daß es ganze Zahlen x und y gibt mit

$$0 < x < d \text{ und } |\alpha x - y| \le \frac{1}{d}.$$

(b) Gegeben sei eine natürliche Zahl m > 1 sowie $d, e \in \mathbb{N}$ mit

$$1 < d, e \le m < de.$$

Man zeige: Ist $c \in \mathbb{N}$ teilerfremd zu m, so gibt es $x, x' \in \mathbb{Z}$ mit

$$0 < x < d$$
, $0 < x' < e$ und $x' \equiv \pm cx \mod m$.

(Tip: Wende (a) auf $\alpha = \frac{c}{m}$ an.)

Aufgabe 26:

Sei p eine Primzahl > 2. Zeige: Ist $p \equiv 1 \mod 8$, so ist jede der folgenden Kongruenzen in $\mathbb Z$ lösbar:

(a)
$$X^4 \equiv -1 \mod p$$
, (b) $X^2 \equiv 2 \mod p$.

Gilt jeweils auch die Umkehrung?

(Hinweis zu (a): Es gibt Primitivwurzeln mod p. Hinweis zu (b): $(X^2+1)^2-2X^2=X^4+1$.)

Aufgabe 27:

Sei p ein Primteiler der $Fermatschen\ Zahl$

$$F_n := 2^{2^n} + 1.$$

- (a) Durch Betrachtung der Ordnung der Restklasse 2 mod p zeige man, daß p die Gestalt $p=1+k2^{n+1}$ hat. Für $n\geq 2$ ist insbesondere $p\equiv 1$ mod 8.
- (b) Sei $n \geq 2$. Indem man Aufgabe 26 (b) benutzt, zeige man, daß sogar $p = 1 + t2^{n+2}$ mit einem $t \in \mathbb{N}$ gelten muß.
- (c) Man erschließe: 641 ist der kleinste Primteiler von F_5 . (Mit etwas mehr Aufwand kann man zeigen, dass F_5 die Primfaktorzerlegung $F_5 = 641 \cdot 6700417$ hat.)

Aufgabe 28:

Fällt aus. Dafür sind je 7 Punkte bei den Aufgaben 26 und 27 erzielbar und 6 bei Aufgabe 25.