Übungsblatt Nr. 6, Besprechung am 24.9.2013

Aufgabe 1:

Seien $a, b, c \in \mathbb{R}_{>0}$ fest. Geben Sie (in Abhängigkeit von a, b, c) die Lösungsmenge der $x \in \mathbb{R}$ an, die die folgenden Gleichungen lösen.

$$a^{\ln(x^b)} = c$$
, $x^x = 1$, $(\ln(a))^x = b$,
 $\exp(cx)^a = 2^b$, $\ln\left(\frac{a}{e^{x-c}}\right) = b$, $x^{2\ln(a)} = 2^b$.

Aufgabe 2:

Schreiben Sie die folgenden komplexen Zahlen in der Form a+ib, $a,b \in \mathbb{R}$, wobei $i^2=-1$. Berechnen Sie weiter das komplex Konjugierte, den Betrag, das multiplikativ Inverse sowie das Quadrat dieser komplexen Zahlen.

$$\frac{1}{1-i}$$
, $\frac{1-i}{1+i}$, $\frac{(1+2i)^2}{2+3i}$, $\frac{1+2i}{(2+3i)^2}$, $\left(\frac{4-i}{2+i}\right)^2$.

Aufgabe 3:

Skizzieren Sie die folgende Menge in der komplexen Ebene:

$$M := \left\{ z \in \mathbb{C}; \ \left| \frac{z-i}{z+i} \right| = 2 \right\}$$

Aufgabe 4:

Für welche $z \in \mathbb{C}$ gilt $\cos z \in \mathbb{R}$, $\cos z \in [-1, 1]$, $\cos z = 1$?