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Abstract

We show that for every fixed A > 0 and θ > 0 there is a ϑ =
ϑ(A, θ) > 0 with the following property. Let n be odd and sufficiently
large, and let Q1 = Q2 := n1/2(log n)−ϑ and Q3 := (log n)θ. Then for
all q3 ≤ Q3, all reduced residues a3 mod q3, almost all q2 ≤ Q2, all
admissible residues a2 mod q2, almost all q1 ≤ Q1 and all admissible
residues a1 mod q1, there exists a representation n = p1 +p2 +p3 with
primes pi ≡ ai (qi), i = 1, 2, 3.

1 Introduction and results

1.1 Preliminaries

Let n be a sufficiently large integer, and for every i = 1, 2, 3 let ai, qi be
relatively prime integers with qi ≥ 1 and 0 ≤ ai < qi.

We consider the ternary Goldbach problem of writing n as

n = p1 + p2 + p3

with primes p1, p2 and p3 satisfying the three congruences

pi ≡ ai mod qi, i = 1, 2, 3.

A necessary condition for solvability is

n ≡ a1 + a2 + a3 mod (q1, q2, q3),

where (q1, q2, q3) denotes the greatest common divisor of the qi. Otherwise
no such representation of n is possible.

0key words and phrases: Ternary Goldbach problem with primes in residue classes;
Hardy-Littlewood circle method; applications of the large sieve
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We precise our consideration in the following way. Let

J3(n) :=
∑

m1+m2+m3=n
mi≡ai (qi),

i=1,2,3

Λ(m1) Λ(m2) Λ(m3),

where Λ is von Mangoldt’s function. J3(n) goes closely with the number of
representations of n in the way mentioned.

In this paper we prove that the deviation of J3(n) from its expected main
term is uniformly small for large moduli, namely:

Theorem 1. For every fixed A > 0 and θ > 0 there is a ϑ = ϑ(A, θ) > 0
such that for all q3 ≤ (log n)θ and a3 with (a3, q3) = 1 we have

∑

q2≤
n1/2

(log n)ϑ

max
a2

(a2,q2)=1

∑

q1≤
n1/2

(log n)ϑ

max
a1

(a1,q1)=1

∣
∣
∣
∣
J3(n) − n2S3(n)

2ϕ(q1)ϕ(q2)ϕ(q3)

∣
∣
∣
∣

≪ n2

(log n)A
.

The O-constant depends on the parameters A and θ.

Here S3(n) denotes the singular series for this special Goldbach problem and
depends on ai and qi likewise J3(n) does.

We set S3(n) = 0 if n 6≡ a1 + a2 + a3 mod (q1, q2, q3), the case where trivially
J3(n) = 0 occurs. Then a summand = 0 in the formula of Theorem 1 is
given, therefore we can assume in the proof without loss of generality that
n ≡ a1+a2+a3 mod(q1, q2, q3) holds. We refer to this as ”general condition”,
under this, S3(n) is defined and investigated later in paragraphs 2.2 and 2.3.

Definition. For any given q1, q2, q3 we call a triplet a1, a2, a3 of residues
mod q1, q2, q3 admissible for q1, q2, q3, if (ai, qi) = 1 for i = 1, 2, 3, if n ≡
a1 + a2 + a3 mod (q1, q2, q3) and if S3(n) > 0.
For given q3, a3, q2, a2 and q1 we call a1 admissible, if a1, a2, a3 is admissible for
q1, q2, q3. For given q3, a3, q2 we call a2 admissible, if there exists an admissible
a1 for every positive integer q1.

We prove in paragraph 2.3
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Lemma 1. If n is odd, then for given q3, a3 with (a3, q3) = 1 and q2 there
exists an admissible a2 (such that for every q1 there exists an admissible a1).
For even n and given q1, q2, q3 there exists no admissible triplet a1, a2, a3.

Theorem 1 provides

Theorem 2. Let A, θ, ϑ > 0 as above and n ∈ N odd and sufficiently large.
Let Q1, Q2 := n1/2(log n)−ϑ, Q3 := (log n)θ. Then for all q3 ≤ Q3, all a3,
almost all q2 ≤ Q2, all admissible a2, almost all q1 ≤ Q1 and all admissible
a1 there exists a representation n = p1 + p2 + p3 with primes pi ≡ ai (qi),
i = 1, 2, 3. Here the number of exceptions for q2 is ≪ Q2(log n)−A resp. for
q1 is ≪ Q1(log n)−A.

Theorem 2 as corollary of Theorem 1 is proved in section 6.

Theorem 1 is shown by the circle method. It seems that it also should hold
with the larger bound q3 ≤ n1/2(log n)−ϑ, which is the case on the major arcs.
It is not possible to achieve this on the minor arcs by the given methods.

Notation. We denote by ϕ, µ, Λ and τ the functions of Euler, Möbius, von
Mangoldt and the divisor function. Other occuring functions are given in
their context. By qi ∼ Qi we abbreviate Qi < qi ≤ 2Qi. By p and pi we
denote primes. As usual, e(α) := e2πiα for α ∈ R.

1.2 Proceeding by the circle method

Let A > 0 and θ > 0. Let R := (log n)B with B = B(A, θ) := max{A +
η + 3, D(8A + 2θ + 74)}, where η > 0 is some absolute constant (see end
of paragraph 2.2), and D(8A + 2θ + 74) > 0 is some constant depending
just on A and θ, its definition is given in the proof of Lemma 5. Further let
ϑ > max{A + 4B + 16, θ + A + 3}, so ϑ depends also on A and θ.

We define major arcs M ⊆ R by

M :=
⋃

q≤R

⋃

0<a<q
(a,q)=1

]
a

q
− R

qn
,
a

q
+

R

qn

[

and minor arcs by m :=
]
−R

n
, 1 − R

n

[
\ M.
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For α ∈ R and j = 1, 2, 3 let

Sj(α) :=
∑

m≤n
m≡aj (qj)

Λ(m) e(αm).

From the orthogonal relations for e(αm) it follows that

J3(n) =

∫ 1−R
n

−R
n

S1(α)S2(α)S3(α) e(−nα) dα.

Analogously, denote for m ≤ n

J2(m) :=
∑

m2+m3=m
m2≡a2 (q2)
m3≡a3 (q3)

Λ(m2)Λ(m3) =

∫ 1−R
n

−R
n

S2(α)S3(α) e(−mα) dα.

By

JM

3 (n) :=

∫

M

S1(α)S2(α)S3(α) e(−nα) dα

and

JM

2 (m) :=

∫

M

S2(α)S3(α) e(−mα) dα

denote the values of J3(n) and J2(m) on the major arcs M and by

Jm

3 (n) := J3(n) − JM

3 (n), Jm

2 (m) := J2(m) − JM

2 (m)

the values on the minor arcs m.

Concerning the major arcs we get

Theorem 3. For Q1, Q2, Q3 ≤ n1/2/(log n)ϑ we have

EM

Q1,Q2,Q3
:=

∑

qi∼Qi,
i=1,2,3

max
ai,(ai,qi)=1,

i=1,2,3

∣
∣
∣
∣
JM

3 (n) − n2S3(n)

2ϕ(q1)ϕ(q2)ϕ(q3)

∣
∣
∣
∣
≪ n2

(log n)A+3
.

We prove Theorem 3 in the following section 2.

In section 3 a lemma containing a special form of Montgomery’s sieve is
proven. Section 4 delivers a proof of Theorem 1 using Theorem 3 and the
lemma from section 3. Further used lemmas concerning estimations on the
minor arcs are proven afterwards in section 5.
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2 Estimations on the major arcs

2.1 Getting the main term and the error term

We have
JM

3 (n) =
∑

q≤R

∑

0<a<q
(a,q)=1

I(a, q),

where

I(a, q) :=

∫ R
qn

− R
qn

S1

(
a

q
+ α

)

S2

(
a

q
+ α

)

S3

(
a

q
+ α

)

e

(

−n

(
a

q
+ α

))

dα.

For j = 1, 2, 3 we have for α ∈ [− R
qn

, R
qn

]

Sj

(
a

q
+ α

)

=
∑

m≤n
m≡aj (qj)

Λ(m) e(αm) e

(
a

q
m

)

=
∑

m≤n
m≡aj(qj)
(m,q)=1

Λ(m) e(αm) e

(
a

q
m

)

+
∑

m≤n
m≡aj (qj)
(m,q)>1

Λ(m) e(αm) e

(
a

q
m

)

=
∑

1≤k≤q
(k,q)=1

∑

m≤n
m≡aj (qj)
m≡k (q)

Λ(m) e(αm) e

(
a

q
k

)

+ O((log n)2)

since

∑

m≤n
m≡aj(qj)
(m,q)>1

Λ(m) =
∑

pe≤n
pe≡aj(qj)

p|q

log p ≤
∑

p|q

log p · log n

log p
≪ log n

∑

p|q

1 ≪ (log n)2.

So

Sj

(
a

q
+ α

)

=
∑

1≤k≤q
(k,q)=1

k≡aj((qj ,q))

e

(
a

q
k

)

Tj,k(α) + O((log n)2)

5



with
Tj,k(α) :=

∑

m≤n
m≡aj (qj)
m≡k (q)

Λ(m) e(αm) =
∑

m≤n
m≡fj,k ([qj ,q])

Λ(m) e(αm).

Here Tj,k depends on k with 1 ≤ k ≤ q, (k, q) = 1, k ≡ aj ((qj , q)). For such
a k there exists an integer fj,k such that the congruence m ≡ fj,k ([qj , q]) is
equivalent to the system m ≡ aj (qj), m ≡ k (q), so the last step follows.

Now for positive integers x and h ≤ x let

∆(x, h) := max
y≤x

max
(l,h)=1

∣
∣
∣
∣
∣

∑

m≤y
m≡l (h)

Λ(m) − y

ϕ(h)

∣
∣
∣
∣
∣
.

This expression is ≥ 1 for h ≤ x. (Take y = ϕ(h) and l = 1).

Note that by the Theorem of Bombieri and Vinogradov (see, for example,
Brüdern [2]) we have

∑

h≤U

∆(x, h) ≪ x

(log x)D
+ U

√
x(log(Ux))6

for any fixed D ≥ 1. This yields that if U ≤ x1/2/(log x)D+6, then

∑

h≤U

∆(x, h) ≪ x

(log x)D
.

Now we compute Tj,k(α) by partial summation and by introducing ∆. We
get

Tj,k(α) =
∑

m≤n
m≡fj,k([qj ,q])

Λ(m) e(αm)

= −
∫ n

0

(
∑

m≤y
m≡fj,k([qj ,q])

Λ(m)

)
d

dy
(e(αy))dy +

(
∑

m≤n
m≡fj,k([qj ,q])

Λ(m)

)

e(αn)

= −
∫ n

0

(
y

ϕ([qj , q])
+ O(∆(n, [qj, q]))

)
d

dy
e(αy)dy

+

(
n

ϕ([qj, q])
+ O(∆(n, [qj, q]))

)

e(αn)
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=
1

ϕ([qj , q])

(

−
∫ n

0

y

(
d

dy
e(αy)

)

dy + ne(αn)

)

+ O

(

(1 + |α|n)∆(n, [qj , q])

)

=
1

ϕ([qj , q])

∫ n

0

e(αy)dy + O

(
R

q
∆(n, [qj , q])

)

,

since |α| ≤ R
qn

and 1 ≤ R
q
.

This yields, using

∫ n

0

e(αy)dy = M(α) + O(1), M(α) :=
n∑

m=1

e(αm),

the expression

Tj,k(α) =
M(α)

ϕ([qj, q])
+ O

(
R

q
∆(n, [qj , q])

)

.

We use this term for Tj,k(α) to compute Sj(
a
q

+ α) as

Sj

(
a

q
+ α

)

=
∑

1≤k≤q
(k,q)=1

k≡aj ((qj ,q))

e

(
a

q
k

)(
M(α)

ϕ([qj, q])
+ O

(
R

q
∆(n, [qj , q])

))

+ O((logn)2)

=
cj(a, q)

ϕ([qj, q])
M(α) + O

(
R

q
∆(n, [qj , q])

)

+ O((log n)2)

=
cj(a, q)

ϕ([qj, q])
M(α) + O

(
R

q
(log n)2∆(n, [qj , q])

)

since (log n)2 ≥ 1 and R
q
∆(n, [qj , q]) ≥ 1, with Ramanujan sums

cj(a, q) :=
∑

1≤k≤q
(k,q)=1

k≡aj ((q,qj))

e

(
a

q
k

)

for j = 1, 2, 3.

We used here that |cj(a, q)| = 1 or cj(a, q) = 0, see paragraph 2.2.

This provides

I(a, q) =

∫ R
qn

− R
qn

S1

(
a

q
+ α

)

S2

(
a

q
+ α

)

S3

(
a

q
+ α

)

e

(

−n

(
a

q
+ α

))

dα
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= Ha,q(n) + O1 + O2 + O3

with

Ha,q(n) :=
(c1c2c3)(a, q)

ϕ([q1, q])ϕ([q2, q])ϕ([q3, q])
e

(

−n
a

q

)∫ R
qn

− R
qn

M3(α)e(−nα)dα,

O1 :=
∑

j,k,l

1

ϕ([qj, q])ϕ([qk, q])

∫ R
qn

− R
qn

|M2(α)|dα · O
(

R

q
(log n)2∆(n, [ql, q])

)

,

O2 :=
∑

j,k,l

1

ϕ([qj, q])

∫ R
qn

− R
qn

|M(α)|dα · O
(

R2

q2
(log n)4∆(n, [qk, q])∆(n, [ql, q])

)

,

O3 := O

(
R3

q3
(log n)6∆(n, [q1, q])∆(n, [q2, q])∆(n, [q3, q])

R

qn

)

.

Note that we abbreviated (c1c2c3)(a, q) := c1(a, q)c2(a, q)c3(a, q). The sum
∑

j,k,l is over all triplets (j, k, l) of pairwise different j, k, l ∈ {1, 2, 3}.
So we managed to show

JM

3 (n) =
∑

q≤R

∑

a<q
(a,q)=1

I(a, q) =
∑

q≤R

∑

a<q
(a,q)=1

(Ha,q(n) + O1 + O2 + O3).

The main term of JM

3 (n) is contained in

H(n) :=
∑

q≤R

∑

a<q
(a,q)=1

Ha,q(n).

We have to show now that for each i = 1, 2, 3 the error term Oi fulfills

∑

q1,q2,q3

∑

q≤R

∑

a<q
(a,q)=1

Oi ≪
n2

(log n)A+3
,

then it will follow that

∑

q1,q2,q3

max
a1,a2,a3

∣
∣JM

3 (n) − H(n)
∣
∣≪ n2

(log n)A+3
.

The main term H(n) will be considered later.
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So we first consider the error term with O1. It is (since ϕ(q) ≫ q/(log log q))

≪
∑

j,k,l

∑

q≤R

∑

qj ,qk

1

ϕ([qj , q])ϕ([qk, q])

∑

a<q
(a,q)=1

R2

q2
n(log n)2

∑

ql

∆(n, [ql, q])

≪
∑

j,k,l

∑

qj

log log n

qj

∑

qk

log log n

qk
R2n(log n)2

∑

ql

∑

q≤R

1

q
∆(n, [ql, q])

≪ R2n(log n)5
∑

j,k,l

∑

hl≤RQl

ω(hl)∆(n, hl)

with

ω(hl) :=
∑

ql

∑

q≤R
[ql,q]=hl

1

q
=
∑

dl≤R

∑

ql

∑

q≤R
(ql,q)=dl
qlq=hldl

1

q

≪
∑

dl≤R

∑

q≤R
dl|q

1

q
≪
∑

dl≤R

∑

q≤R

1

qdl

≪ (log n)2,

so the O1-error term is

≪ R2n(log n)7
∑

j,k,l

∑

h≤RQl

∆(n, h) ≪ R2n(log n)7 n

(log n)D

≪ n2

(log n)D−2B−7
≪ n2

(log n)A+3
,

for some D ≥ A+2B+10 and D+6 ≤ ϑ−B, so this holds if ϑ ≥ A+3B+16,
which is the case. We used the Theorem of Bombieri and Vinogradov with
Ql ≪ n1/2(log n)−ϑ for ϑ > 0. So we are done for O1.

We consider now the error term with O2. It is

≪
∑

j,k,l

∑

q≤R

∑

qj

1

ϕ([qj , q])

∑

a<q
(a,q)=1

R3

q3
(log n)4

∑

qk,ql

∆(n, [qk, q])∆(n, [ql, q])

≪
∑

j,k,l

∑

qj

log log n

qj

R3(log n)4
∑

qk,ql

∑

q≤R

1

q2
∆(n, [qk, q])∆(n, [ql, q])

≪ R3(log n)6
∑

j,k,l

∑

hk≤RQk

∑

hl≤RQl

ω(hk, hl)∆(n, hk)∆(n, hl)
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with

ω(hk, hl) :=
∑

qk,ql

∑

q≤R
[qk,q]=hk

[ql,q]=hl

1

q2
=

∑

dk ,dl≤R

∑

qk,ql

∑

q≤R
(qk ,q)=dk,(ql,q)=dl
qkq=hkdk ,qlq=hldl

1

q2

≪
∑

dk,dl≤R

∑

q≤R
[dk,dl]|q

1

q2
≤

∑

dk,dl≤R

∑

q≤R

1

q2[dk, dl]2

=
∑

dk,dl≤R

∑

q≤R

(dk, dl)
2

q2d2
kd

2
l

≤ R2
∑

q

1

q2

∑

dk

1

d2
k

∑

dl

1

d2
l

≪ R2,

so the O2-error term is

≪ R5(log n)6
∑

hk≤RQk

∆(n, hk)
∑

hl≤RQl

∆(n, hl)

≪ R5(log n)6 ·
(

n

(log n)D

)2

=
n2

(log n)2D−5B−6
≪ n2

(log n)A+3
,

for some 2D ≥ A+5B+9 and D+6 ≤ ϑ−B, so this holds if ϑ ≥ 1
2
A+ 7

2
B+11,

which is the case. We used the Theorem of Bombieri and Vinogradov with
Qk, Ql ≪ n1/2(log n)−ϑ for ϑ > 0. So we are done for O2.

Now to the error term with O3, it is

≪
∑

q≤R

∑

a<q
(a,q)=1

R4

q4n
(log n)6

∑

q1,q2,q3

∆(n, [q1, q])∆(n, [q2, q])∆(n, [q3, q])

≪ R4

n
(log n)6

∑

h1≤RQ1
h2≤RQ2
h3≤RQ3

ω(h1, h2, h3)∆(n, h1)∆(n, h2)∆(n, h3)

with

ω(h1, h2, h3) :=
∑

q1,q2,q3

∑

q≤R
[qi,q]=hi

1

q3
=

∑

d1,d2,d3≤R

∑

q1,q2,q3

∑

q≤R
(qi,q)=di
qiq=hidi

1

q3
≪

∑

d1,d2,d3≤R

∑

q≤R
[d1,d2,d3]|q

1

q3

≪
∑

d1,d2,d3≤R

∑

q≤R

1

q3[d1, d2, d3]3
=

∑

d1,d2,d3≤R

∑

q≤R

(d1, [d2, d3])
3(d2, d3)

3

q3d3
1d

3
2d

3
3
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≪
∑

d1,d2≤R

∑

d3≤R

1

d3
3

∑

q≤R

1

q3
≪ R2,

so the O3-error term is

≪ R6

n
(log n)6

∑

h1≤RQ1

∆(n, h1)
∑

h2≤RQ2

∆(n, h2)
∑

h3≤RQ3

∆(n, h3)

≪ R6

n
(log n)6 n3

(log n)3D
=

n2

(log n)3D−6B−6
≪ n2

(log n)A
,

for some 3D ≥ A+6B+9 and D+6 ≤ ϑ−B, so this holds if ϑ ≥ 1
3
A+3B+9,

which is the case. We used the Theorem of Bombieri and Vinogradov with
Q1, Q2, Q3 ≪ n1/2(log n)−ϑ for ϑ > 0. So we are done for O3.

What is now left is the consideration of the main term H(n). Since

∫ R
qn

− R
qn

M3(α)e(−nα)dα =
n2

2
+ O

(
q2n2

R2

)

(see for example Vaughan [5]) we have

H(n) =
∑

q≤R

∑

a<q
(a,q)=1

(c1c2c3)(a, q)e
(
−na

q

)

ϕ([q1, q])ϕ([q2, q])ϕ([q3, q])

(
n2

2
+ O

(
q2n2

R2

))

.

Now let

λ(q) :=
ϕ(q1)ϕ(q2)ϕ(q3)

ϕ([q1, q])ϕ([q2, q])ϕ([q3, q])
b(q)

with

b(q) :=
∑

a<q
(a,q)=1

(c1c2c3)(a, q) e

(

−n
a

q

)

and let

S3(n) :=

∞∑

q=1

λ(q)

be the singular series. In the next paragraph we show that it is absolutely
convergent.
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Therefore we have

H(n) =
∑

q≤R

λ(q)n2

2ϕ(q1)ϕ(q2)ϕ(q3)
+ O

(

n2

R2

∑

q≤R

q2|λ(q)|
ϕ(q1)ϕ(q2)ϕ(q3)

)

=
n2

2ϕ(q1)ϕ(q2)ϕ(q3)
S3(n) + O(e1) + O(e2)

with

e1 :=
n2

ϕ(q1)ϕ(q2)ϕ(q3)

∑

q>R

|λ(q)|,

e2 :=
n2

R2ϕ(q1)ϕ(q2)ϕ(q3)

∑

q≤R

q2|λ(q)|.

For the two occuring error terms e1 and e2 we have to show that

∑

q1,q2,q3

max
a1,a2,a3

ej ≪
n2

(log n)A+3
,

then Theorem 3 follows. This is done in the next paragraph.

2.2 Estimations with the singular series

Now we need estimations for the λ-series. These show the absolute conver-
gence of S3(n) and can also be used to deal with e1 and e2.

First we state that the Ramanujan sums cj(a, q) for fixed aj , qj, j = 1, 2, 3,
can be computed by

cj(a, q) = caj ,qj
(a, q) =

{

µ
(

q
dj

)
e
(aujaj

dj

)
, if

(
dj,

q
dj

)
= 1,

0, else,

where dj := (qj, q) and uj is the solution of the congruence q
dj

uj ≡ 1 (dj),

with 0 ≤ uj < dj. (For a proof see [6]). From this result we already used
that |cj(a, q)| = 1 or cj(a, q) = 0 in the paragraph before.

We are now going to show that b is multiplicative in q. We prove a proposition
about the cj first.
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Proposition 1. Let q = q̄q̃, (q̄, q̃) = 1, (a, q) = 1, and let a = ãq̄ + āq̃ with
(ã, q̃) = 1, (ā, q̄) = 1. Then cj(a, q) = cj(ã, q̃) · cj(ā, q̄) for j = 1, 2, 3.

Proof. Let ãj q̄ + āj q̃ ≡ aj ((qj , q)) with ãj a residue mod (qj , q̃) and āj a
residue mod (qj , q̄). Then we have for j = 1, 2, 3

cj(a, q) =
∑

m<q
(m,q)=1

m≡aj((qj ,q))

e
(

m
a

q

)

=
∑

m̃<q̃
(m̃,q̃)=1

m̃≡ãj ((qj ,q̃))

∑

m̄<q̄
(m̄,q̄)=1

m̄≡āj ((qj ,q̄))

e
((m̃q̄ + m̄q̃)(ãq̄ + āq̃)

q̃q̄

)

by substituting m = m̃q̄ + m̄q̃ with m̃ ≡ ãj ((qj , q̃)) and m̄ ≡ āj ((qj, q̄)), and
we have ãj ≡ aj q̄

−1 ((qj , q̃)) and āj ≡ aj q̃
−1 ((qj, q̄)). Therefore we get

cj(a, q) =
∑

m̃<q̃
(m̃,q̃)=1

m̃≡aj q̄−1 ((qj ,q̃))

e
(m̃ãq̄

q̃

) ∑

m̄<q̄
(m̄,q̄)=1

m̄≡aj q̃−1 ((qj ,q̄))

e
(m̄āq̃

q̄

)

=
∑

m̃<q̃
(m̃,q̃)=1

m̃≡aj ((qj ,q̃))

e
(m̃ã

q̃

) ∑

m̄<q̄
(m̄,q̄)=1

m̄≡aj ((qj ,q̄))

e
(m̄ā

q̄

)

= cj(ã, q̃) · cj(ā, q̄). �

Proposition 1 provides the multiplicativity of b:

Proposition 2. Let (q̄, q̃) = 1. Then b(q̄q̃) = b(q̄)b(q̃).

Proof. We have

b(q̄q̃) =
∑

a<q̄q̃
(a,q̄q̃)=1

(c1c2c3)(a, q̄q̃)e
(

−n
a

q̄q̃

)

=
∑

ã<q̃
(ã,q̃)=1

∑

ā<q̄
(ā,q̄)=1

(c1c2c3)(ã, q̃) · (c1c2c3)(ā, q̄) · e
(

−n
ãq̄ + āq̃

q̄q̃

)

by substituting a = ãq̄ + āq̃ in the last step. We further get

b(q̄q̃) =
∑

ā<q̄
(ā,q̄)=1

(c1c2c3)(ā, q̄)e
(

−n
ā

q̄

) ∑

ã<q̃
(ã,q̃)=1

(c1c2c3)(ã, q̃)e
(

−n
ã

q̃

)
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= b(q̄) · b(q̃). �

Proposition 2 shows that it suffices to evaluate b at prime powers pk, p prime
and k ≥ 1, to obtain formulas for b and λ. It may happen that b(pk) = 0,
what we study now.

We first show:

Proposition 3. Let j ∈ {1, 2, 3}. If pk ∤ qj and (p | qj or k 6= 1), then
cj(a, pk) = 0.

Proof.

Firstly, if pk ∤ qj and p | qj , we have dj = (qj , p
k) = pr with 1 ≤ r < k and

(dj,
pk

dj
) = (pr, pk−r) ≥ p, so cj(a, pk) = 0.

Secondly, if pk ∤ qj and k 6= 1, then dj = (qj , p
k) = pr with 0 ≤ r < k, and

(

dj,
pk

dj

)

= (pr, pk−r) = pmin(r,k−r).

For r > 0 this is ≥ p, and so cj(a, pk) = 0. For r = 0 we have dj = 1 and

µ(pk

dj
) = µ(pk) = 0 since k 6= 1, so cj(a, pk) = 0, too. �

Therefore cj(a, pk) = 0 holds unless pk | qj or (p ∤ qj and k = 1). This shows
that

b(pk) =
∑

a<pk

(a,p)=1

c1(a, pk)c2(a, pk)c3(a, pk) e

(

−n
a

pk

)

= 0,

unless pk | qj or (p ∤ qj and k = 1) for every j = 1, 2, 3. We now have to
consider only these cases.

Case 1. If k ≥ 1, pk | (q1, q2, q3), then

b(pk) =
∑

a<pk

(a,p)=1

c1(a, pk)c2(a, pk)c3(a, pk) e

(

−n
a

pk

)

=
∑

a<pk

(a,p)=1

e

(

−n
a

pk

)
∏

i=1,2,3

e

(
aai

pk

)

(since di = (qi, p
k) = pk so ui = 1)
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=
∑

a<pk

(a,p)=1

e

(
a1 + a2 + a3 − n

pk
a

)

,

so b(pk) = ϕ(pk) since pk | a1 + a2 + a3 − n by the general condition.

Case 2. If k = 1 and (p, q1) = (p, q2) = (p, q3) = 1 then

b(p) =

p−1
∑

a=1

c1(a, p)c2(a, p)c3(a, p) e

(

−n
a

p

)

=

p−1
∑

a=1

e

(

−n
a

p

)
∏

i=1,2,3

p−1
∑

m=1

e

(

m
a

p

)

︸ ︷︷ ︸

=−1

=

{

1 − p, if p | n, (A)

1, if p ∤ n. (B)

Case 3. If k = 1, p | q1 (so d1 = p) and (p, q2) = (p, q3) = 1 (analogously
the cases with permuted indices), then

b(p) =

p−1
∑

a=1

c1(a, p)c2(a, p)c3(a, p) e

(

−n
a

p

)

=

p−1
∑

a=1

e

(

−n
a

p

)

e

(
aa1

p

)( p−1
∑

m=1

e

(

m
a

p

)

︸ ︷︷ ︸

=−1

)2

=

p−1
∑

a=1

e

(
a1 − n

p
a

)

=

{

p − 1, if p | a1 − n, (C)

−1, if p ∤ a1 − n. (D)

Case 4. If k = 1, p | q1, p | q2 and (p, q3) = 1 (analogously the cases with
permuted indices), then

b(p) =

p−1
∑

a=1

c1(a, p)c2(a, p)c3(a, p) e

(

−n
a

p

)

=

p−1
∑

a=1

e

(

−n
a

p

)

e

(
aa1

p

)

e

(
aa2

p

) p−1
∑

m=1

e

(

m
a

p

)

︸ ︷︷ ︸

=−1
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= −
p−1
∑

a=1

e

(
a1 + a2 − n

p
a

)

=

{

1 − p, if p | a1 + a2 − n, (E)

1, if p ∤ a1 + a2 − n. (F )

If we combine all these cases, we have shown

1. If k ≥ 1 and pk | (q1, q2, q3): b(pk) = ϕ(pk), furthermore λ(pk) = b(pk).

2. If p ∤ (q1, q2, q3):

b(p) =







1 − p, if (p, q1) = (p, q2) = (p, q3) = 1, p | n, (A)

1, if (p, q1) = (p, q2) = (p, q3) = 1, p ∤ n, (B)

p − 1, if p | q1, (p, q2) = (p, q3) = 1, p | a1 − n, (C)

also with permuted indices,

−1, if p | q1, (p, q2) = (p, q3) = 1, p ∤ a1 − n, (D)

also with permuted indices,

1 − p, if p | q1, p | q2, (p, q3) = 1, p | a1 + a2 − n, (E)

also with permuted indices,

1, if p | q1, p | q2, (p, q3) = 1, p ∤ a1 + a2 − n, (F )

also with permuted indices,

so b(p) ∈ {±1,±(p − 1)}. Expressed in λ we have

λ(p) =







1
(p−1)3

, (B)

− 1
(p−1)2

, (A), (D)
1

p−1
, (C), (F )

−1. (E)

3. In any other case: b(pk) = λ(pk) = 0.

In the following let d := (q1, q2, q3) where the qj are fixed. For a prime p let
γp such that pγp‖d, that is pγp | d but pγp+1 ∤ d.

Now with b, λ is multiplicative too, since ϕ(qi)ϕ([qi, q̄q̃]) = ϕ([qi, q̄])ϕ([qi, q̃])
for (q̄, q̃) = 1, i = 1, 2, 3. This multiplicativity for λ shows for Q ≥ 1:

Q
∑

q=1

q|λ(q)| ≤
∏

p≤Q
prime

(

1 +

2 log Q
∑

k=1

pk|λ(pk)|
)
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=
( ∏

p≤Q,p|d

(1 + p|λ(p)| + p2|λ(p2)| + · · · + pγp|λ(pγp)|)
)

·
( ∏

p≤Q,(p,d)=1

(1 + p|λ(p)|)
)

≤
(∏

p|d

(1 + p(p − 1) + p2(p2 − p) + · · ·+ pγp(pγp − pγp−1))
)

·
( ∏

p≤Q,(p,d)=1

(1 + p|λ(p)|)
)

≤
(∏

p|d

p2γp

)

·
( ∏

p≤Q,(p,d)=1

(1 + p|λ(p)|)
)

= d2 · A · B · C · D,

where

A :=
∏

p≤Q,(B)

(

1 +
p

ϕ(p)3

)

≤
∑

q,p|q⇒p≤Q

qµ2(q)

ϕ(q)3
≪
∑

q

µ2(q)

q2
(log log q)3 ≪ 1,

B :=
∏

p≤Q,(A)

(

1 +
p

ϕ(p)2

)

·
∏

i=1,2,3

∏

p≤Q,
(D) for qi

(

1 +
p

ϕ(p)2

)

≤







∑

q≤n
p|q⇒p|n

qµ2(q)

ϕ(q)2







∏

i=1,2,3







∑

q≤qi
p|q⇒p|qi

qµ2(q)

ϕ(q)2







≪
(
∑

q≤n

µ2(q)

q
(log log q)2

)4

≪ (log n)8,

C :=
∏

i=1,2,3

∏

p≤Q
(C) for qi

(

1 +
p

p − 1

)

·
∏

i,j∈{1,2,3}
i6=j

∏

p≤Q
(F ) for qi,qj

(

1 +
p

p − 1

)

≤
∏

i=1,2,3

∏

p|qi

(1 + 2) ·
∏

i,j∈{1,2,3}
i6=j

∏

p|(qi,qj)

(1 + 2) ≤
∏

i=1,2,3

22ω(qi) ·
∏

i,j∈{1,2,3}
i6=j

22ω((qi,qj))

≤ τ 2(q1)τ
2(q2)τ

2(q3)τ
2((q1, q2))τ

2((q1, q3))τ
2((q2, q3)) ≤ τ 4(q1)τ

4(q2)τ
4(q3),

D :=
∏

i,j,k∈{1,2,3}
i,j,k p.w.d.

∏

p≤Q
(E) for qi,qj,qk

(1 + p) ≤
∏

i,j,k∈{1,2,3}
i,j,k p.w.d.

∏

p|(qi,qj)
p∤qk

(1 + p)

=
∏

i,j,k∈{1,2,3}
i,j,k p.w.d.

σ

(
∏

p|(qi,qj)
p∤qk

p

)

≤
∏

i,j,k∈{1,2,3}
i,j,k p.w.d.

σ

(
(qi, qj)

(q1, q2, q3)

)

≪
∏

i,j,k∈{1,2,3}
i,j,k p.w.d.

(qi, qj)

d
log n

=
1

d3
(q1, q2)(q1, q3)(q2, q3)(log n)3,

where σ(t) :=
∑

t|q t is the divisor sum function, for which σ(t) ≪ t log t

holds, and ω(t) is the number of distinct prime factors of t.
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Therefore

Q
∑

q=1

q|λ(q)| ≪ (q1, q2)(q1, q3)(q2, q3)

(q1, q2, q3)
τ 4(q1)τ

4(q2)τ
4(q3)(log n)11,

also true for Q → ∞. So for any Q ≥ 1 we have

∑

q≥Q

|λ(q)| ≤ 1

Q

∞∑

q=1

q|λ(q)| ≤ 1

Q

(q1, q2)(q1, q3)(q2, q3)

(q1, q2, q3)
τ 4(q1)τ

4(q2)τ
4(q3)(log n)11.

We see that the singular series S3(n) =
∑∞

q=1 λ(q) converges absolutely, and
we have

S3(n) ≪ (q1, q2)(q1, q3)(q2, q3)

(q1, q2, q3)
τ 4(q1)τ

4(q2)τ
4(q3)(log n)11.

It follows further that

∑

q1,q2,q3

max
a1,a2,a3

e1 ≪
∑

q1,q2,q3

(q1, q2)(q1, q3)(q2, q3)

dϕ(q1)ϕ(q2)ϕ(q3)

n2

R
τ 4(q1)τ

4(q2)τ
4(q3)(log n)11

≪ n2

R
(log n)12

∑

q1,q2,q3

τ 4(q1)τ
4(q2)τ

4(q3)(q1, q2)(q1, q3)(q2, q3)

q1q2q3d

≪ n2

R
(log n)η ≪ n2

(log n)A+3
,

since B ≥ A + η + 3 in R = (log n)B for some absolute constant η > 0. This
can be proven as follows. By using

∑

t≤n

τm(t)

t
≤ (log n)2m

,

we see that

∑

q1,q2,q3

(q1, q2)(q1, q3)(q2, q3)

q1q2q3(q1, q2, q3)
τ 4(q1)τ

4(q2)τ
4(q3)

≤
∑

d≤n

∑

a,b,c≤n

∑

e,f,g≤n

dadbdc

d3a2b2c2efgd
τ 12(d)τ 8(a)τ 8(b)τ 8(c)τ 4(e)τ 4(f)τ 4(g)
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=
∑

d

∑

a,b,c

∑

e,f,g

τ 12(d)τ 8(a)τ 8(b)τ 8(c)τ 4(e)τ 4(f)τ 4(g)

abcdefg

≪ (log n)η

for some absolute constant η > 0, where we substituted q1 = dabe, q2 = dacf ,
q3 = dcbg with pairwise coprime a, b, c and e, f, g.

Further we have

∑

q≤R

q2|λ(q)| ≤ R
∞∑

q=1

q|λ(q)| ≪ Rτ 4(q1)τ
4(q2)τ

4(q3)
(q1, q2)(q1, q3)(q2, q3)

d
(log n)11,

so also

∑

q1,q2,q3

max
a1,a2,a3

e2 ≪
∑

q1,q2,q3

n2(q1, q2)(q1, q3)(q2, q3)

Rϕ(q1)ϕ(q2)ϕ(q3)d
τ 4(q1)τ

4(q2)τ
4(q3)(log n)11

≪ n2

(log n)A+3

as above.

So everything concerning Theorem 3 is shown. �

2.3 Discussion of the singular series

Now we consider S3(n) under the general condition.

Since S3(n) is absolutely convergent and since λ is multiplicative, we see that
it has an Eulerproduct, namely

S3(n) =
∏

p

(

1 +
∞∑

k=1

λ(pk)
)

.

For pα‖(q1, q2, q3) we have 1 + λ(p) + · · · + λ(pα) = pα and for other primes
p we get factors according to the cases (A), . . . , (F ). Moreover we see that
S3(n) vanishes if case (E) for a prime p occurs, that is if

(E) : ∃ j, k, l ∈ {1, 2, 3} pairwise different with
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p | (qj , qk), p ∤ ql, p | n − (aj + ak).

In all other cases we have

S3(n) = (q1, q2, q3)
∏

p,(A)
or (D)

(

1− 1

(p − 1)2

) ∏

p,(B)

(

1 +
1

(p − 1)3

) ∏

p,(C)
or (F )

(

1 +
1

p − 1

)

with properties

(A) : (p, q1) = (p, q2) = (p, q3) = 1, p | n,

(B) : (p, q1) = (p, q2) = (p, q3) = 1, p ∤ n,

(C) : ∃ j, k, l ∈ {1, 2, 3} pwd: p | qj , (p, qk) = (p, ql) = 1, p | n − aj,

(D) : ∃ j, k, l ∈ {1, 2, 3} pwd: p | qj, (p, qk) = (p, ql) = 1, p ∤ n − aj,

(F ) : ∃ j, k, l ∈ {1, 2, 3} pwd: p | qj, p | qk, (p, ql) = 1, p ∤ n − (aj + ak).

So we see that S3(n) = 0 if and only if case (E) occurs or the general
condition is not fulfilled. Further if S3(n) > 0 we see from the Eulerproduct
that it is at least some absolute positive constant times (q1, q2, q3), since
∏

p>2(1 − (p − 1)−2) converges and the other products are > 1.

Now we prove

Lemma 1. If n is odd, then for given q3, a3 with (a3, q3) = 1 and q2 there
exists an admissible a2 (such that for every q1 there exists an admissible a1).
For even n and given q1, q2, q3 there exists no admissible triplet a1, a2, a3.

Recall that a1, a2, a3 is admissible for q1, q2, q3, if (ai, qi) = 1 for i = 1, 2, 3,
n ≡ a1 + a2 + a3 mod (q1, q2, q3) and S3(n) > 0.

Proof. For the proof, let q := (q1, q2, q3) and denote by νp(m) the exponent
of a prime p in m, that is pνp(m) | m but pνp(m)+1 ∤ m.

First let n be even, and consider q1, q2, q3 with

(a) 2 | qj , 2 ∤ qk, ql. Then (A), (B), (E), (F ) are not possible, and the condi-
tion 2 | n − aj is wrong since aj must be odd. Therefore (D) holds with
p = 2, and so S3(n) = 0.

(b) 2 | qj , qk and 2 ∤ ql. Then (A), . . . , (D) are not possible, and condition
2 | n − (aj + ak) in (E) holds since aj, ak are odd, so S3(n) = 0.

(c) Further 2 | q1, q2, q3 is not possible since then a1, a2, a3 are odd and so
n 6≡ a1 + a2 + a3 (q), so S3(n) = 0.
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(d) Also 2 ∤ q1, q2, q3 is not possible since then (A) holds for p = 2, so
S3(n) = 0 holds.

Now let n be odd and let q3, a3 with (a3, q3) = 1 and q2 be given. We
construct a2 and q2 with (a2, q2) = 1 such that

∀ p | (q3, q2) : n 6≡ a3 + a2 (p).

For any p | (q3, q2) take hp such that 1 ≤ hp ≤ p−1 with n−a3 +hp 6≡ 0 (p).
Such a number hp exists for p > 2 since then p − 1 > 1, and if p = 2 take
h2 = 1 since n− a3 + 1 6≡ 0 (2) holds for p = 2 | (q3, q2), where q3 is even and
therefore a3 is odd.

Then take a2 with (a2, q2) = 1 and a2 ≡ n−a3+hp (p) for every p | (q3, q2) via
the Chinese Remainder Theorem. Now we prove that this a2 is admissible.
For this, consider now any q1, and we have to find now an admissible a1, that
means such that

(1) n ≡ a1 + a2 + a3 ((q1, q2, q3)),

(2) ∀ p | (q1, q2), p ∤ q3 : n 6≡ a1 + a2 (p),

(3) ∀ p | (q1, q3), p ∤ q2 : n 6≡ a1 + a3 (p),

(4) ∀ p | (q2, q3), p ∤ q1 : n 6≡ a2 + a3 (p).

Now condition (4) is fulfilled by the choice of a2. We have to construct now
an admissible a1 mod q1, (a1, q1) = 1, namely such that conditions (1) − (3)
are fulfilled.

Firstly, a1 has to be such that a1 ≡ n−a2−a3 ((q1, q2, q3)). Since n−a2−a3 ≡
−hp 6≡ 0 (p) for any p | (q2, q3) we see that a1 mod (q1, q2, q3) may be chosen
like that, and it will not contradict to (a1, q1) = 1, and also condition (1) is
fulfilled.

Further a1 must be a1 ≡ n−a3 +kp 6≡ 0 (p) for every p | (q1, q3), p ∤ q2, where
1 ≤ kp ≤ p−1 (condition (3)), and also with a1 ≡ n−a2+lp 6≡ 0 (p) for every
p | (q2, q1), p ∤ q3, where 1 ≤ lp ≤ p − 1 (condition (2)). Here the existence
of lp and kp can be explained as above for hp. Then take a1 with (a1, q1) = 1
to hold these congruences, again via the Chinese Remainder Theorem. It is
admissible by construction. �

By studying property (E), we encounter the following connection with the
binary Goldbach problem.
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Let p be any prime > 2 and let n be sufficiently large. We can construct
ai, qi, with (ai, qi) = 1 for i = 1, 2, 3, and with

p | (q1, q2), p ∤ q3, n ≡ a1 + a2 (p), a1 + a2 + a3 ≡ n ((q1, q2, q3)),

namely take any odd q1, q2, q3 such that p | (q1, q2), p ∤ q3, and take a1

with n − a1 6≡ 0 (p) relatively prime to q1, take a2 relatively prime to q2

with a2 ≡ n − a1 (p) and (n − a1 − a2, (q1, q2, q3)) = 1, and a3 with a3 ≡
n − a1 − a2 ((q1, q2, q3)) relatively prime to q3. If we could show that there
exist primes pi ≡ ai (qi), i = 1, 2, 3, with n = p1 + p2 + p3, and so n ≡
a1 + a2 + p3 ((q1, q2)), then since n ≡ a1 + a2 (p) it follows that 0 ≡ p3 (p),
so p3 = p and n − p = p1 + p2. Then the number n − p would be the sum of
two primes.

So if the considered ternary Goldbach problem with primes in independent
arithmetic progressions touches the binary Goldbach problem, the circle
method fails.

3 A Lemma involving sieve methods

Before considering the minor arcs we show the following Lemma by using the
large sieve inequality and a formula of Montgomery in [4]. The method was
already presented in [3].

Lemma 2. For Q ≥ 1, H > 0 and b1, . . . , bn ∈ C we have

∑

q∼Q

q max
0≤a<q

∣
∣
∣
∣
∣

∑

m≤n
m≡a(q)

bm

∣
∣
∣
∣
∣

2

≪ (n2 + Q2)H−1(log Q) max
m≤n

|bm|2 + (n + Q2) H(logQ)
∑

m≤n

|bm|2

with an absolute O-constant.

Remark. If Q may be some small power of n the Cauchy-Schwarz-estimate

∑

q∼Q

q max
0≤a<q

∣
∣
∣
∣
∣

∑

m≤n
m≡a(q)

bm

∣
∣
∣
∣
∣

2

≪
∑

q≤2Q

q
∑

m≤n

|bm|2
n

q
≪ n Q

∑

m≤n

|bm|2
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is weaker. An approach with the large sieve inequality involving characters
does not work either.

Proof of Lemma 2.

For a residue class a mod q we set

N(a, q) :=
∑

m≤n
m≡a(q)

bm.

Now the expression on the left hand side in Lemma 2 is E1 + E2 with

E1 :=
∑

q∼Q
d(q)>H

q max
0≤a<q

|N(a, q)|2

and
E2 :=

∑

q∼Q
d(q)≤H

q max
0≤a<q

|N(a, q)|2.

Consider first E1. Let

AQ := #{q ; q ∼ Q, d(q) > H},

then
AQH <

∑

q∼Q
d(q)>H

d(q) ≤
∑

q≤2Q

d(q) ≪ Q log Q,

so

AQ ≪ Q log Q

H
.

Since N(a, q) ≪ (n
q

+ 1) maxm≤n |bm| we get

E1 ≪
∑

q∼Q
d(q)>H

q max
a

|N(a, q)|2 ≪
∑

q∼Q
d(q)>H

q

(
n2

q2
+ 1

)

max
m≤n

|bm|2

≪ AQ

(
n2

Q
+ Q

)

max
m≤n

|bm|2 ≪
(

n2

H
+

Q2

H

)

(log Q) max
m≤n

|bm|2.
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This is the first summand on the right hand side of Lemma 2.

Now to E2.

For any integer 0 ≤ h < q let

fh(q) :=
∑

d|q

µ(d)
q

d
N
(

h,
q

d

)

,

so Möbius’ inversion formula gives

qN(h, q) =
∑

d|q

fh(d)

for all 0 ≤ h < q. With this we have

E2 =
∑

q∼Q
d(q)≤H

1

q
max
0≤a<q

q2|N(a, q)|2 =
∑

q∼Q
d(q)≤H

1

q
max
0≤a<q

∣
∣
∣
∣
∣

∑

d|q

fa(d)

∣
∣
∣
∣
∣

2

≤
∑

q∼Q
d(q)≤H

d(q)

q

∑

d|q

max
0≤a<q

|fa(d)|2.

The maximum is taken over a with 0 ≤ a < q. We see that |fa(d)|2 is
d-periodic in a for d|q, since N(a + d, t) = N(a, t) for t|d, so

fa+dl(d) =
∑

t|d

µ(t)
d

t
N
(

a+dl,
d

t

)

=
∑

t|d

µ(t)
d

t
N
(

a,
d

t

)

= fa(d) for all l ∈ Z,

therefore the maximum stays equal if taken only over a with 0 ≤ a < d. We
estimate this maximum by

∑

0≤a<d and get

E2 ≤
∑

q∼Q
d(q)≤H

d(q)

q

∑

d|q

∑

0≤a<d

|fa(d)| 2.

By Montgomery in [4], equation (10), we have for T (α) :=
∑

m≤n bme(αm),
α ∈ R, the formula

1

d

d−1∑

h=0

|fh(d)|2 =
∑

a<d
(a,d)=1

∣
∣
∣
∣
T

(
a

d

)∣
∣
∣
∣

2

,
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that we can apply here. We get

E2 ≤
∑

q∼Q
d(q)≤H

d(q)
∑

d|q

d

q

∑

a<d
(a,d)=1

∣
∣
∣
∣
T

(
a

d

)∣
∣
∣
∣

2

≤ H
∑

d≤2Q

(
∑

q∼Q
d|q

d

q

)
∑

a<d
(a,d)=1

∣
∣
∣
∣
T

(
a

d

)∣
∣
∣
∣

2

≪ H(log Q)
∑

d≤2Q

∑

a<d
(a,d)=1

∣
∣
∣
∣
T

(
a

d

)∣
∣
∣
∣

2

≪ H(log Q) (n + Q2)
∑

m≤n

|bm|2

by the inequality of the large sieve. This is the second term on the right
hand side of Lemma 2. �

4 The conclusion with Lemma 2

Now let A, θ > 0 and ϑ > 0 as above. Let Q1, Q2, Q3 ≤ n1/2/(log n)ϑ.

We consider first

Em

Q1,Q2,Q3
:=

∑

q3∼Q3

max
a3

∑

q2∼Q2

max
a2

∑

q1∼Q1

max
a1

|Jm

3 (n)| .

From the definition of J3 and J2 we have

Em

Q1,Q2,Q3
≤
∑

q3

max
a3

∑

q2

max
a2

∑

q1

max
a1

∑

m1≤n
m1≡a1(q1)

Λ(m1) |Jm

2 (n − m1)|

≤
∑

q3

max
a3

∑

q2

max
a2

∑

q1

max
a1

∑

m≤n
m≡n−a1(q1)

(log n) |Jm

2 (m)|.

By Cauchy-Schwarz’ inequality we now get

Em

Q1,Q2,Q3
≤ (log n)

∑

q3

max
a3

∑

q2

max
a2

(
∑

q1∼Q1

q1 max
a1

∣
∣
∣
∣

∑

m≤n
m≡a1 (q1)

|Jm

2 (m)|
∣
∣
∣
∣

2 )1/2
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and we apply Lemma 2 to the expression in large brackets.

Since Q1 ≤ n1/2 we see that

Em

Q1,Q2,Q3
≪ (log n)

∑

q3

max
a3

∑

q2

max
a2

(
n2

H
(log n) max

m≤n
|Jm

2 (m)|2

+ nH(log n)
∑

m≤n

|Jm

2 (m)|2
)1/2

.

Now we apply the following two lemmas, which will be proven in the last
paragraphs.

Lemma 3. For Q2, Q3 ≤ n1/2/(log n)ϑ we have

∑

q2,q3

max
m≤n
a2,a3

|Jm

2 (m)| ≪ n(log n)7.

Lemma 4. For Q2 ≤ n1/2/(log n)ϑ and Q3 ≤ (log n)θ we have

∑

q3

max
a3

∑

q2

max
a2

(
∑

m≤n

|Jm

2 (m)|2
)1

2

≪ n3/2

(log n)2A+16
.

Here the sum over such a small Q3-range is of course pointless; but we state
it here to see why no larger bound for Q3 is possible to get with the given
method in the proof of Lemma 4.

With H := (log n)2A+23 it follows from Lemma 3 and 4 that

Em

Q1,Q2,Q3
≪ n2

(log n)A+3
.

Finally, together with Theorem 3, we get for Q2 ≤ n1/2/(log n)ϑ and Q3 ≤
(log n)θ the estimate

∑

q3∼Q3

max
a3

(a3,q3)=1

∑

q2∼Q2

max
a2

(a2,q2)=1

∑

q1∼Q1

max
a1

(a1,q1)=1

∣
∣
∣
∣
J3(n) − n2S3(n)

2ϕ(q1)ϕ(q2)ϕ(q3)

∣
∣
∣
∣

≤
∑

k,Q3=2k

≤(log n)θ

∑

j,Q2=2j

≤n1/2/(log n)ϑ

∑

i,Q1=2i

≤n1/2/(log n)ϑ

(
Em

Q1,Q2,Q3
+ EM

Q1,Q2,Q3

)
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≪ (log n)3 · n2

(log n)A+3
=

n2

(log n)A
,

and from that follows Theorem 1.

So it remains to show Lemma 3 and Lemma 4.

5 Two Lemmas on the minor arcs

5.1 Proof of Lemma 3

We have ∑

q2,q3

max
m≤n
a2,a3

|Jm

2 (m)| =
∑

q2,q3

max
m≤n
a2,a3

|J2(m) − JM

2 (m)|.

Now we estimate J2(m) and JM

2 (m). The reason why we split Jm

2 (m) is that
the trivial upper estimate for Jm

2 (m), namely

Jm

2 (m) ≪
∫ 1

0

|S2(α)S3(α)|dα,

does not suffice.

We have

J2(m) =

∫ 1

0

S2(α)S3(α) e(−mα) dα

=
∑

m2≤n
m2≡a2 (q2)

Λ(m2)
∑

m3≤n
m3≡a3 (q3)

Λ(m3)

∫ 1

0

e(α(m2 + m3 − m)) dα

and by the orthogonal relations for e(αm) we have that the last integral is
1, if m2 + m3 = m, and 0 otherwise. Therefore we get

J2(m) ≪
∑

m2≤n
m2≡a2 (q2)

m2≡m−a3 (q3)

(log n)2 ≪ n

[q2, q3]
(log n)2 ≪ n

q2q3

(log n)2(q2, q3),

so

∑

q2,q3

max
m≤n
a2,a3

|J2(m)| ≪ n(log n)2
∑

q2,q3

(q2, q3)

q2q3
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≪ n(log n)2
∑

m,q′2,q′3

m

mq′2mq′3
≪ n(log n)5.

Now we consider the following

Proposition 4. We have
∑

q2,q3

max
a2,a3
m≤n

|JM

2 (m)| ≪ n(log n)7.

By this and together with above estimation we get therefore Lemma 3. �

Proof of Proposition 4.

We have to consider the analogous estimation for JM

2 (m) as was done in
paragraph 2.1 in order to estimate JM

3 (m).

We get

JM

2 (m) =
∑

q≤R

∑

a<q
(a,q)=1

I(a, q)

with

I(a, q) =

∫ R/qn

−R/qn

S2

(
a

q
+ α

)

S3

(
a

q
+ α

)

e

(

−m

(
a

q
+ α

))

dα

=
(c2c3)(a, q)

ϕ([q2, q])ϕ([q3, q])
e

(

−m
a

q

)∫ R/qn

−R/qn

M2(α)e(−mα)dα

+
∑

i,j

1

ϕ([qi, q])

∫ R/qn

−R/qn

|M(α)|dα · O
(

R

q
(log n)2∆(n, [qj , q])

)

+ O

(
R3

nq3
(log n)4∆(n, [q2, q])∆(n, [q3, q])

)

=: Ha,q(m) + O1 + O2,

say. Now

∑

q2,q3

∑

q≤R

∑

a<q
(a,q)=1

O1 ≪
∑

i,j

∑

q≤R

∑

qi

1

ϕ([qi, q])

∑

a<q
(a,q)=1

R

q
(log n)2

∑

qj

∆(n, [qj , q])

≪
∑

i,j

∑

qi

log log n

qi
R(log n)2

∑

qj

∑

q≤R

∆(n, [qj , q])
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≪ (log n)4R
∑

j

∑

hj≤RQj

ω(hj)∆(n, hj)

with

ω(hj) :=
∑

qj

∑

q≤R
[qj ,q]=hj

1 =
∑

dj≤R

∑

qj

∑

q≤R
(q,qj)=dj

qqj=hjdj

1

≪
∑

dj≤R

∑

q≤R
dj |q

1 ≪ R log R ≪ R log n.

So the O1-error term is

≪ R2(log n)5
∑

j

∑

hj≤RQj

∆(n, hj) ≪ R2(log n)5 · n

(log n)ϑ−B−6

≪ n(log n)3B−ϑ+11 ≪ n(log n)−A−B−2 ≪ n,

again by using Bombieri-Vinogradov’s Theorem and ϑ ≥ A + 4B + 13.

Now to O2. We have

∑

q2,q3

∑

q≤R

∑

a<q
(a,q)=1

O2 ≪
∑

q≤R

∑

a<q
(a,q)=1

R3

nq3
(log n)4

∑

q2,q3

∆(n, [q2, q])∆(n, [q3, q])

≪ R3

n
(log n)4

∑

h2≤RQ2
h3≤RQ3

ω(h2, h3)∆(n, h2)∆(n, h3)

with

ω(h2, h3) :=
∑

q2,q3

∑

q≤R
[qi,q]=hi

i=2,3

1

q2
=

∑

d2,d3≤R

∑

q2,q3

∑

q≤R
(qi,q)=di
qiq=hidi

i=2,3

1

q2

≪
∑

d2,d3≤R

∑

q≤R
[d2,d3]|q

1

q2
≪
∑

d2,d3

∑

q≤R

1

q2[d2, d3]2

=
∑

d2,d3

∑

q≤R

1

q2d2
2d

2
3

(d2, d3)
2 ≪

∑

d3≤R

1 ≪ R,
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so the O2-error term is

≪ R4

n
(log n)4

( ∑

h2≤RQ2

∆(n, h2)
)( ∑

h3≤RQ3

∆(n, h3)
)

≪ n(log n)6B−2ϑ+16 ≪ n,

again by using Bombieri-Vinogradov’s Theorem and ϑ ≥ A + 4B + 13.

Now there remains the main term. Since

∫ R/qn

−R/qn

M2(α)e(−mα)dα = m − 1 + O

(
qn

R

)

≪ n

for q ≤ R we can estimate it in the following way. It is

H :=
∑

q2,q3

max
m≤n
a2,a3

∑

q≤R

∑

a<q
(a,q)=1

(c2c3)(a, q)

ϕ([q2, q])ϕ([q3, q])
e

(

−m
a

q

)∫ R/qn

−R/qn

M2(α)e(−mα)dα

≪ n
∑

q2,q3

∑

q≤R

q(log n)

[q2, q][q3, q]
= n(log n)

∑

q2,q3

∑

q≤R

(q2, q)(q3, q)

q2qq3

≪ n(log n)
∑

a,b,c,d,e,f,g

dc · db

dace · dabf · dbcg
≪ n(log n)7,

where we substituted q2 = dace, q3 = dabf , q = dbcg with a, b, c, d, e, f, g ≤ n,
d := (q, q1, q3), and pairwise relatively prime a, b, c and e, f, g.

This shows the Proposition. �

5.2 Proof of Lemma 4

Since the left hand side of Lemma 4 is

≪
(
∑

q3

q3 max
a3

∑

q2

q2 max
a2

∑

m≤n

|Jm

2 (m)|2
)1

2

,

it suffices to show that

∑

q3

q3 max
a3

∑

q2

q2 max
a2

∑

m≤n

|Jm

2 (m)|2 ≪ n3

(log n)4A+32
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for any A > 0 in the required regions for Q2 and Q3. The left hand side is

∑

q3

q3 max
a3

∑

q2

q2 max
a2

∑

m≤n

∣
∣
∣
∣

∫

m

S2(α)S3(α) e(−mα)dα

∣
∣
∣
∣

2

≤
∑

q3

q3 max
a3

∑

q2

q2 max
a2

∫

m

|S2(α)S3(α)|2dα

by Bessel’s inequality. Now

|S2(α)|2 =
∑

m,m′≤n
m≡m′≡a2 (q2)

Λ(m)Λ(m′) e(α(m − m′))

=
∑

|r|≤n
r≡0 (q2)

e(αr)
∑

m≤n
m≡a2 (q2)
m−r≤n

Λ(m)Λ(m − r)

=:
∑

|r|≤n
r≡0 (q2)

e(αr)R(r; a2, q2),

say, with R(r; a2, q2) ≪ n
q2

(log n)2.

So the left hand side is

≪ n(log n)2
∑

q3∼Q3

q3 max
a3

∑

q2∼Q2

∑

|r|≤n
r≡0 (q2)

∣
∣
∣
∣

∫

m

|S3(α)|2 e(αr)dα

∣
∣
∣
∣

≪ n(log n)2
∑

q3∼Q3

q3 max
a3

∑

0<|r|≤n

τ(|r|)
∣
∣
∣
∣

∫

m

|S3(α)|2e(αr)dα

∣
∣
∣
∣

+ n(log n)2 Q2

∑

q3∼Q3

q3 max
a3

∫ 1

0

|S3(α)|2dα.

Now ∫ 1

0

|S3(α)|2dα ≪ n

q3

(log n)2,

so the second term is ≪ n2(log n)2Q2Q3(log n)2 ≪ n5/2(log n)4+θ ≪ n3(log n)−A

and therefore in the required bound.
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The first term is

≪ n(log n)2
∑

q3

q3 max
a3

(
∑

0<|r|≤n

τ(|r|)2

)1/2( ∑

0<|r|≤n

∣
∣
∣
∣

∫

m

|S3(α)|2e(αr)dα

∣
∣
∣
∣

2)1/2

≪ n3/2(log n)4
∑

q3∼Q3

q3 max
a3

(∫

m

|S3(α)|4dα

)1/2

≪ n3/2(log n)4

(
∑

q3∼Q3

q2
3

)1/2( ∑

q3∼Q3

max
a3

∫

m

|S3(α)|4dα

)1/2

≪ n3/2(log n)4

(
∑

q3∼Q3

q3
3 max

a3

∫

m

|S3(α)|4dα

)1/2

.

Now here is the difficulty to show a nontrivial bound for the expression in
large brackets. It should be ≪ n3/(log n)C for any large constant C > 0 and
large Q3, but however one tries to manage it, there is still some power of Q3

left. We best can give the bound

≪ n3/2(log n)4

(
∑

q3∼Q3

q3
3 max

a3

max
α∈m

|S3(α)|2
∫ 1

0

|S3(α)|2dα

)1/2

.

Now we need another Lemma to estimate |S3(α)|2 for α ∈ m, it is the fol-
lowing.

Lemma 5. For all q3 ∼ Q3, (a3, q3) = 1 and α ∈ m we have |S3(α)|2 ≪
n2

q3(log n)C for C = 8A + 2θ + 74.

By using this we get for the above expression

≪ n3/2(log n)5

(
∑

q3∼Q3

Q3
n3

(log n)C

)1/2

≪ n3

(log n)C/2−5
Q3 ≪

n3

(log n)4A+32

for C = 8A + 2θ + 74 since Q3 ≤ (log n)θ.

So we see that Q3 cannot be chosen as a power of n using the given method.
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But this estimation shows Lemma 4 for Q2 ≤ n1/2/(log n)ϑ and Q3 ≤ (log n)θ

as required. �

Proof of Lemma 5.

By Lemma 2 of A. Balog in [1] we have the validity of the following assertion.
For C > 0 there exists a D = D(C) > 0 such that for any α ∈ R with
‖α − u

v
‖ < 1

v2 with integers (u, v) = 1 and (log n)D ≤ v ≤ n
(log n)D we have

∑

q3≤n1/3/(log n)D

q3 max
(a3,q3)=1

|S3(α)|2 ≪ n2

(log n)C
,

and since Q3 ≤ (log n)θ ≪ n1/3

(log n)D also

∑

q3∼Q3

q3 max
(a3,q3)=1

|S3(α)|2 ≪ n2

(log n)C
.

By Dirichlet’s Approximation Theorem, for α ∈ R and B > 0 there exist

integers u, v, 1 ≤ v ≤ n/(log n)B, with (u, v) = 1 and ‖α− u
v
‖ < (log n)B

vn
, and

for α ∈ m it follows that v ≥ (log n)B.

Therefore the conditions of Balog’s Lemma are fulfilled if we take B ≥
D(8A + 2θ + 74), and it can be applied then. It follows that for all α ∈ m

we have
∑

q3∼Q3

q3 max
a3

|S3(α)|2 ≪ n2

(log n)8A+2θ+74
,

and so we have for all q3 ∼ Q3 and (a3, q3) = 1 the inequality

|S3(α)|2 ≪ n2

q3(log n)8A+2θ+74
,

since

|S3(α)|2 ≪ 1

Q3

∑

q3∼Q3

q3 max
a3

|S3(α)|2 ≪ 1

Q3

· n2

(log n)8A+2θ+74
.

That shows Lemma 5. �
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6 Proof of Theorem 2

Now we prove Theorem 2 in this last section. Let A, θ, ϑ > 0 be as in
Theorem 2 and let n be odd and sufficiently large.

Besides J3(n) consider also

R3(n) =
∑

p1,p2,p3
p1+p2+p3=n
pi≡ai (qi),

i=1,2,3

log p1 log p2 log p3 and r3(n) =
∑

p1,p2,p3
p1+p2+p3=n
pi≡ai (qi),

i=1,2,3

1.

Then we have
|R3(n) − J3(n)| ≤ (log n)3W,

where W denotes the number of solutions of pl + qj + rk = n, with p, q, r
prime and where l, j or k are at least 2, and pl ≡ a1 (q1), qj ≡ a2 (q2),
rk ≡ a3 (q3). Now four cases occur: For i = 1, 2, 3, 4 let W(i) be the number
of solutions in case (i), namely (1) l, j ≥ 2, (2) l = 1, j ≥ 2, (3) l ≥ 2, j = 1,
(4) l = j = 1, k ≥ 2.

In case (1) there are at most O(
√

n) many possibilities for pl, qj ≤ n, so
W(1) ≪ n and we have

∑

q1,q2,q3
maxa1,a2,a3 W(1) ≪ n2

(log n)2ϑ−θ ≪ n2

(log n)A+3

since ϑ > θ + A + 3.

In case (4) we have at most O(
√

n) many possibilities for rk ≤ n and

≪ n
q2

many for q, so W(4) ≪ n3/2

q2
and we get

∑

q1,q2,q3
maxa1,a2,a3 W(4) ≪

Q1Q3n
3/2 ≪ n2

(log n)ϑ−θ ≪ n2

(log n)A+3 since ϑ > θ + A + 3.

The same estimation comes of course analogously with W(2) in case (2).

In case (3) we consider the number

#{pl ≤ n; l ≥ 2, pl ≡ a1 (q1)} ≤
∑

m≤n
m≡a1(q1)

Λ(m)(1 − µ2(m)) =: N(a1, q1)

in the context of section 3, with bm := Λ(m)(1 − µ2(m)). Then W(3) ≪
N(a1, q1) · n

q2
, and by application of Lemma 2 we get

∑

q1,q2,q3

max
a1,a2,a3

W(3) ≪ nQ3

∑

q1

max
a1

N(a1, q1) ≪ nQ3

(∑

q1

q1 max
a1

N(a1, q1)
2
)1/2

≪ nQ3

(n2

H
+ n3/2H

)1/2

log n
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since
∑

m≤n

|bm|2 =
∑

m≤n
m≡a1 (q1)

Λ2(m)(1 − µ2(m))2 ≪
∑

pk≤n
k≥2

(log p)2 ≪
√

n log n

and Q1 ≤
√

n.

If we choose the parameter H as H := n1/2

(log n)2A+6Q2
3

we get further

∑

q1,q2,q3

max
a1,a2,a3

W(3) ≪ nQ3

(

n3/2(log n)2A+6Q2
3 +

n2

Q2
3(log n)2A+6

)1/2

≪ n · n3/4Q2
3(log n)A+3 +

n2

(log n)A+3
≪ n2

(log n)A+3
.

So we get
∑

q1,q2,q3

max
a1,a2,a3

W ≪ n2

(log n)A+3
.

Therefore it follows from Theorem 1:

∑

q3

max
a3

∑

q2

max
a2

∑

q1

max
a1

∣
∣
∣R3(n) − n2S3(n)

2ϕ(q1)ϕ(q2)ϕ(q3)

∣
∣
∣

≤
∑

q3

max
a3

∑

q2

max
a2

∑

q1

max
a1

∣
∣
∣R3(n) − J3(n)

∣
∣
∣

+
∑

q3

max
a3

∑

q2

max
a2

∑

q1

max
a1

∣
∣
∣J3(n) − n2S3(n)

2ϕ(q1)ϕ(q2)ϕ(q3)

∣
∣
∣

≪
∑

q1,q2,q3

max
a1,a2,a3

W (log n)3 +
n2

(log n)A
≪ n2

(log n)A
.

So the formula of Theorem 1 holds also for R3(n) instead of J3(n).

Now let q3 ≤ Q3 = (log n)θ and (a3, q3) = 1 be fixed.

For given q2 and admissible a2 consider

Q1 := {q1 ≤ Q1; ∃ a1 adm. : R3(n) = 0}, E1 := #Q1,

and

Q2 := {q2 ≤ Q2; ∃ a2 adm. : E1 ≥ Q1(log n)−A}, E2 := #Q2.
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We have S3(n) ≫ 1 if it is positive (see the formula for it as Euler product),
so we have

E2 ·
Q1

(log n)A
· n2

Q1Q2Q3

≤
∑

q2∈Q2

max
a2 adm.

E1≥
Q1

(log n)A

∑

q1∈Q1

max
a1 adm.
R3(n)=0

∣
∣
∣
∣

n2S3(n)

2ϕ(q1)ϕ(q2)ϕ(q3)

∣
∣
∣
∣

≪ n2

(log n)2A+θ

by Theorem 1, and it follows that E2 ≪ Q2(log n)−A.

So for almost all q2 and all admissible a2 we have that E1 < Q1(log n)−A, that
means that for almost all q1 and all admissible a1 it holds that R3(n) > 0.

Since r3(n) ≥ R3(n)
(log n)3

, it follows that r3(n) is positive, too, so Theorem 2
follows. �
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[2] J. Brüdern, Einführung in die analytische Zahlentheorie, Springer-
Lehrbuch, 1995.

[3] K. Halupczok, On the number of representations in the ternary Gold-
bach problem with one prime number in a given residue class, J. Number
Theory 117 (2006), no. 2, 292–300.

[4] H. L. Montgomery, A note on the large sieve, J. London Math. Soc.,
1968, vol. 43, 93-98.

[5] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge: Cambridge
Univ. Press, 1981.

[6] Z. F. Zhang, T. Z. Wang, The Ternary Goldbach Problem with Primes
in Arithmetic Progressions, Acta Math. Sinica, English Series, 2001,
Vol. 17, No. 4, 679-696.

36


