
On the ternary Goldbach problem with primes in

arithmetic progressions having a common modulus

Karin Halupczok

Abstract

For A, ε > 0 and any sufficiently large odd n we show that for almost

all k ≤ R := n1/5−ε there exists a representation n = p1 + p2 + p3

with primes pi ≡ bi mod k for almost all admissible triplets b1, b2, b3

of reduced residues mod k.
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1 Introduction and results

Let n be a sufficiently large integer, consider an integer k and let b1, b2, b3 be
integers that are relatively prime to k ≥ 1, with 0 ≤ bi < k, i = 1, 2, 3.

We consider the ternary Goldbach problem of writing n as

n = p1 + p2 + p3

with primes p1, p2 and p3 satisfying the three congruences

pi ≡ bi mod k, i = 1, 2, 3

for the common modulus k. One is interested in the solvability of this ques-
tion for all sufficiently large n with the modulus k being as large as some
power of n. This problem has been studied intensely by many authors. For
an overview, see for example [2].

An obvious necessary condition for solvability is

n ≡ b1 + b2 + b3 mod k,

as otherwise no such representation of n is possible.
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We call such a triplet b1, b2, b3 of reduced residues mod k admissible, and a
pair b1, b2 of reduced residues admissible, if (n−b1−b2, k) = 1. For a given b1

we call b2 admissible, if b1, b2 is an admissible pair. Let us denote the number
of these admissible pairs respectively triplets by A(k).

We make our consideration of this strengthened ternary Goldbach problem
more precise in the following way. Let

J3(n) := Jk,b1,b2,b3(n) :=
∑

m1,m2,m3≤n
m1+m2+m3=n

mi≡bi (k),
i=1,2,3

Λ(m1) Λ(m2) Λ(m3),

where Λ is von Mangoldt’s function. The function J3(n) corresponds closely
to the number of representations of n of the kind we are interested in.

In this paper we prove that the deviation of J3(n) from its expected main
term is uniformly small for large moduli, namely in the following sense.

Theorem 1. For every A, ε > 0, every sufficiently large n and for D ≤ n1/5−ε

we have

E :=
∑

D<k≤2D

k

ϕ(k)

∑

(b1,k)=1

1

ϕ(k)

∑

b2 adm.

∣

∣

∣

∣

J3(n) − n2

k2
S(n, k)

∣

∣

∣

∣

≪ n2

(log n)A
.

Here S(n, k) denotes the singular series for this special Goldbach problem.
In depends on k, while J3(n) depends on k, b1, b2; residue b3 is simply b3 ≡
n − b1 − b2 (k). Namely, see [4], for odd n we have

S(n, k) = C(k)
∏

p|k

p3

(p − 1)3 + 1

∏

p|n
p∤k

(p − 1)((p − 1)2 − 1)

(p − 1)3 + 1

∏

p>2

(

1 +
1

(p − 1)3

)

,

where p > 2 throughout, C(k) = 2 for odd k and C(k) = 8 for even k.

As a consequence of Theorem 1, we prove in section 2 the following result.

Theorem 2. Let A, ε > 0 and let n ∈ N be odd and sufficiently large.

Then for all k ≤ R := n1/5−ε with at most ≪ R(log n)−A exceptions there

exists a representation n = p1 + p2 + p3 with primes pi ≡ bi (k) for all but

≪ A(k)(log n)−A many admissible triplets b1, b2, b3.
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So there are few exceptions for k, and also the number of exceptions of
admissible triplets is small compared with the number A(k) of all admissible
triplets.

Let us compare this Theorem 2 with the result of J. Liu and T. Zhang in
[4] who show the assertion for R := n1/8−ε and all admissible triplets. In
another paper [3], Z. Cui improved this to R := n1/6−ε. Further C. Bauer
and Y. Wang showed in [2] the assertion for R := n5/48−ε, but with only
≪ (log n)B many exceptions.

Here we improved the bound for R again, but at the cost of possibly a few
exceptions of admissible triplets.

2 Proof of Theorem 2

First of all we give a lower bound for A(k):

Lemma 1. For odd n we have A(k) ≫ ϕ(k)2

(log k)3
. More precisely, for every

reduced residue b1 mod k there are ≫ ϕ(k)
(log k)3

many reduced residues b2 mod k

with (n − b1 − b2, k) = 1.

Proof. Fix a reduced residue b1 mod k. Now count the b2 with (b2, k) =
(n − b1 − b2, k) = 1. So b2 is to be chosen such that for all prime divisors
p > 2 of k we have b2 6≡ 0 (p) and b2 6≡ n − b1 (p). This gives ≥ p − 2
possibilities for b2 mod p, and ≥ pl−1(p − 2) possiblilities for b2 mod pl. If
p = 2 for even k we have an odd b1, so n − b1 is even and therefore one can
take b2 ≡ 1(2), so there are 2ν2(k)−1 possibilities for b2 mod 2ν2(k), if 2ν2(k)||k.

Therefore the number of b2 is at least

2max{0,ν2(k)−1}
∏

pl||k
p 6=2

pl−1(p − 2) = ϕ(k)
∏

p|k
p 6=2

p − 2

p − 1

with

∏

p|k
p 6=2

p − 1

p − 2
=

∏

p|k
p 6=2

(

1 +
1

p − 2

)

≤
∏

p|k

(

1 +
2

p − 1

)
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≤
k

∑

q=1

µ(q)2 2ω(q)

ϕ(q)
≪

k
∑

q=1

τ(q)

q
log k ≪ (log k)3.

�

Now we deduce Theorem 2 as a corollary of Theorem 1.

Fix A, ε > 0 and let n be odd and sufficiently large. Consider

R3(n) :=
∑

p1,p2,p3

p1+p2+p3=n
pi≡bi(k),
i=1,2,3

log p1 log p2 log p3 and r3(n) :=
∑

p1,p2,p3

p1+p2+p3=n
pi≡bi(k),
i=1,2,3

1.

Let D < k ≤ 2D with D ≤ R := n1/5−ε. For any admissible triplet b1, b2, b3

mod k we have
|R3(n) − J3(n)| ≤ (log n)3W3,

where W3 denotes the number of solutions of pl + qj + rm = n with p, q, r
prime, and where l, j or m are at least 2 such that pl ≡ b1 (k), qj ≡ b2 (k)
and rm ≡ b3 (k).

Now we prove that

∑

D<k≤2D

k max
b1,b2,b3

admissible

W3 ≪
n2

(log n)A+3
.

For this, we split the number W3 according to whether at least two of the
exponents l, j, m are ≥ 2 or only one is, and for this we write W3 = W1 +W2.
There are at most

√
n prime powers ≤ n with exponent ≥ 2, so in the first

case we have W1 ≪ n, and the sum with W1 replacing W3 is ≪ D2W1 ≪
D2n ≪ n2

(log n)A+3 .

In the second case, if only one exponent is ≥ 2, we have W2 ≪
√

n · n
k

= n3/2

k
,

and so the sum with W2 replacing W3 is ≪ Dn3/2 ≪ n2

(log n)A+3 .

So for D ≤ n1/5−ε it follows from Theorem 1 that

∑

D<k≤2D

k

ϕ(k)

∑

(b1,k)=1

1

ϕ(k)

∑

b2 adm.

∣

∣

∣

∣

R3(n) − n2

k2
S(n, k)

∣

∣

∣

∣
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≤
∑

D<k≤2D

k

ϕ(k)

∑

(b1,k)=1

1

ϕ(k)

∑

b2 adm.

∣

∣

∣

∣

R3(n) − J3(n)

∣

∣

∣

∣

+
∑

D<k≤2D

k

ϕ(k)

∑

(b1,k)=1

1

ϕ(k)

∑

b2 adm.

∣

∣

∣

∣

J3(n) − n2

k2
S(n, k)

∣

∣

∣

∣

≪(log n)3
∑

D<k≤2D

k max
b1,b2,b3

admissible

W3 +
n2

(log n)A
≪ n2

(log n)A
.

So the formula of Theorem 1 holds also with R3(n) replacing J3(n).

Now for D < k ≤ 2D we have A(k) := #{b1, b2 admissible mod k}, and let
T (k) := #{b1, b2 admissible mod k; R3(n) = 0} and consider the set

KD := {k; D < k ≤ 2D, T (k) ≥ A(k)(log n)−A}

and let KD be its cardinality.

Since S(n, k) ≫ 1 if it is positive, which is the case for admissible triplets
and odd n (see its formula above as an Euler product), we have

KD · n2

D
≪

∑

D<k≤2D
k∈KD

k

T (k)

∑

b1,b2 adm.
R3(n)=0

∣

∣

∣

∣

n2

k2
S(n, k)

∣

∣

∣

∣

≪
∑

D<k≤2D

k

A(k)

∑

b1,b2 adm.

(log n)A

∣

∣

∣

∣

R3(n) − n2

k2
S(n, k)

∣

∣

∣

∣

≪ (log n)A+3
∑

D<k≤2D

k

ϕ(k)2

∑

b1,b2
adm.

∣

∣

∣

∣

R3(n) − n2

k2
S(n, k)

∣

∣

∣

∣

≪ n2

(log n)A
,

using Lemma 1 and the above. Therefore it follows that KD ≪ D(log n)−A,
so for all k 6∈ KD we have R3(n) > 0 for all but ≪ A(k)(log n)−A many
admissible triplets b1, b2, b3, and then r3(n) ≫ R3(n)(log n)−3 is positive,
too. This shows Theorem 2, since the overall number of exceptions is

≪
∑

D=2i≤R

KD ≪ (log n) · R

(log n)A+1
=

R

(log n)A
.

�
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3 Proof of Theorem 1

Our proof is in two steps using the circle method.

Let A, ε, θ > 0, B ≥ 2A + 1 and D ≤ n1/4(log n)−θ.

We define major arcs M ⊆ R by

M :=
⋃

q≤D(log n)B

⋃

0<a<q
(a,q)=1

]

a

q
− D(log n)B

qn
,
a

q
+

D(log n)B

qn

[

and minor arcs by

m :=

]

−D(log n)B

n
, 1 − D(log n)B

n

[

\ M.

For α ∈ R and some residue b mod k denote

Sb(α) := Sb,k(α) :=
∑

m≤n
m≡b (k)

Λ(m) e(αm).

From the orthogonal relations for e(αm) it follows that

J3(n) =

∫ 1

0

Sb1(α)Sb2(α)Sb3(α) e(−nα) dα.

By

JM

3 (n) :=

∫

M

Sb1(α)Sb2(α)Sb3(α) e(−nα) dα

we denote the value of the integral for J3(n) on the major arcs M and by

Jm

3 (n) := J3(n) − JM

3 (n)

its value on the minor arcs m.

We first consider the major arcs.

Theorem 3. For D ≤ n1/5−ε we have

EM :=
∑

D<k≤2D

k max
b1,b2,b3

admissible

∣

∣

∣

∣

JM

3 (n) − n2

k2
S(n, k)

∣

∣

∣

∣

≪ n2

(log n)A
.
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We can give a very short proof of Theorem 3 simply by adapting the result of
J. Liu and T. Zhang in [4] for the major arcs used here. In fact, by following
their proof we see that for P := D(log n)B and Q := n

D(log n)B and any U ≤ P ,
we have to choose D such that the conditions

U ≤ n1/3(log n)−E , (UQ)−1 ≤ U−3(log n)−E

DU ≤ D1/3−δn1/3(log n)−E, (UQ)−1 ≤ D1−δ(DU)−3(log n)−E

are satisfied for any E > 0 and small δ > 0. The optimal choice of D is
therefore given by D ≤ n1/5−ε. This proves Theorem 3. The improvement
in this paper comes from the different intervals used as major and minor
arcs such that working on the minor arcs with mean values over b1, b2 is still
possible.

Specifically for an estimate on the minor arcs, we show the following in the
next section.

Theorem 4. For D ≤ n1/4(log n)−θ we have

Em :=
∑

D<k≤2D

k

ϕ(k)

∑

(b1,k)=1

1

ϕ(k)

∑

(b2,k)=1
adm.

|Jm

3 (n)| ≪ n2

(log n)A
.

Theorem 1 is then a corollary of Theorems 3 and 4 since E ≤ EM + Em.

This Theorem is the interesting part of Theorem 1, where we can attain a
higher power of n for the bound of D by considering the mean value over b1, b2

instead of the maximum. But because of this we have to allow exceptions of
admissible triplets in Theorem 2, as we have seen in its proof.

In both Theorems 3 and 4 the resulting bound for D is the optimum with
the given method, so these bounds cannot be balanced to get a larger range
than n1/5. Also the cited method for the major arcs cannot be improved
by using mean values over b1, b2 since the character sum estimates used are
independent of b1, b2.
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4 Proof of Theorem 4: the estimate on the minor arcs

Let D ≤ n1/4(log n)−θ and let
∑∗ denote a sum over reduced residues mod

k. We have

Em ≪
∑

D<k≤2D

k

ϕ(k)2

∑∗

b1,b2

|Jm

3 (n)|

≤
∑

D<k≤2D

k

ϕ(k)2

∑∗

b1,b2

∫

m

|Sb1(α)Sb2(α)Sn−b1−b2(α)| dα

=
∑

D<k≤2D

k

ϕ(k)

∑∗

b1

∫

m

|Sb1(α)| · 1

ϕ(k)

∑∗

b2

|Sb2(α)Sn−b1−b2(α)|dα

≤
∑

D<k≤2D

k

ϕ(k)

∫

m

∑∗

b1

|Sb1(α)|

· 1

ϕ(k)

(

∑

b2 mod k

|Sb2(α)|2
)1/2(

∑

b2 mod k

|Sn−b1−b2(α)|2
)1/2

dα

≤
∑

D<k≤2D

k

ϕ(k)
max
α∈m

∑∗

b1

|Sb1(α)| 1

ϕ(k)

∑

b2 mod k

∫ 1

0

|Sb2(β)|2dβ

≪n(log n)3
∑

D<k≤2D

1

ϕ(k)
max
α∈m

∑∗

b1

|Sb1(α)|

≤n(log n)3
∑

D<k≤2D

max
α∈m

(

1

ϕ(k)

∑∗

b1

|Sb1(α)|2
)1/2

≪n(log n)3
∑

D<k≤2D

(

n2

D2(log n)2A+6

)1/2

.

In the last step we use Lemma 2 below, valid for D ≤ n1/4(log n)−θ and
suitable chosen θ, B > 0 depending just on A > 0.

Now the above is ≪ n(log n)3D n
D(log n)A+3 = n2

(log n)A as was to be shown for
the minor arcs. �

So what is left to show is the following.

Lemma 2. For all A > 0 and B ≥ 2A + 1, θ ≥ B/2 let D ≤ n1/4(log n)−θ

and α ∈ R with ||α − u
v
|| < 1

v2 for some integers u, v with (u, v) = 1 and
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D(log n)B ≤ v ≤ n
D(log n)B . Then for D < d ≤ 2D we have

1

ϕ(d)

∑

c,(c,d)=1

|Sc,d(α)|2 ≪ n2

D2(log n)A
.

We remark that for α ∈ m there exist u, v with (u, v) = 1, v ≤ n
D(log n)B

and ||α − u
v
|| < D(log n)B

vn
≤ 1

v2 by Dirichlet’s approximation theorem, so
v ≥ D(log n)B since α ∈ m, and therefore the conditions of Lemma 2 are
satisfied.

For the proof we need the following auxiliary Lemma. (See [5], Lemma 4.11
and 4.10.)

Lemma 3. Let ||α − u
v
|| ≤ 1

v2 , (u, v) = 1. Then

(a)
∑

m≤X

min(Y, ||αm||−1) ≪ XY

v
+ Y + (X + v)(log v),

(b)
∑

m≤X

min

(

Y

m
, ||αm||−1

)

≪
(

Y

v
+ X + v

)

log(2vX)

Proof of Lemma 2. Fix n large and D ≤ n1/4(log n)−θ, and let α, u and v
be as given in Lemma 2.

We apply Vaughan’s identity on the exponential sum Sc,d(α), see for example
A. Balog in [1], where a similar Lemma is given (Lemma 2 there). From that
it follows that it suffices to show for any complex coefficients |am|, |bk| ≤ 1
and any M ∈ N with

I : M ≤ V 2, if bk = 1 for all k,

II : V ≤ M ≤ n

V
else, where V := D(log n)B,

we have
∑

(c,d)=1

∣

∣

∣

∣

∣

∑

m∼M

∑

k≤n/m
km≡c(d)

ambke(αmk)

∣

∣

∣

∣

∣

2

≪ n2

D(log n)A
.

Here m ∼ M means M < m ≤ M ′ for some M ′ ≤ 2M .
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We consider first case II: Then the left hand side becomes (where m∗ denotes
the inverse of m mod d):

II :=
∑

(c,d)=1

∣

∣

∣

∣

∑

m∼M
(m,d)=1

am

∑

k≤n/m
km≡c(d)

bk e(αmk)

∣

∣

∣

∣

2

≤
∑

(c,d)=1

M
∑

m∼M
(m,d)=1

∣

∣

∣

∣

∑

k≤n/m
k≡cm∗(d)

bk e(αmk)

∣

∣

∣

∣

2

= M
∑

m∼M
(m,d)=1

∑

(c,d)=1

∣

∣

∣

∣

∑

k≤n/m
k≡c(d)

bk e(αmk)

∣

∣

∣

∣

2

= M
∑

m∼M

∑

(c,d)=1

∑

k≤n/m
k≡c(d)

bk

∑

k′≤n/m
k′≡k(d)

bk′ e(αm(k − k′))

= M
∑

m∼M

∑

k≤n/m
(k,d)=1

bk

∑

k′≤n/m
k′≡k(d)

bk′ e(αm(k − k′))

= M
∑

m∼M

∑

k≤n/m
(k,d)=1

bk

∑

l≥(k−n/m)/d
l≤(n/m−1)/d

bk−ld e(αmld)

≤ M
∑

k≤n/M

∑

|l|≤n/Md

∣

∣

∣

∣

∑

m∼M
m≤n/k

m≤n/ max{k−ld,ld+1}

e(αmld)

∣

∣

∣

∣

.

Now the absolute value of the exponential sum is ≪ min(M, ||αld||−1), so

II ≪ M
n

M

∑

|l|≤n/Md

min(M, ||αld||−1)

≪ n
∑

L≤n/M
d|L

min(M, ||αL||−1) + nM

≤ n

(

∑

L≤n/M
d|L

12

)1/2(
∑

L≤n/M

M min(M, ||αL||−1)

)1/2

+ nM

≪ n

(

n

Md

)1/2

M1/2

(

n

v
+ M +

(

n

M
+ v

)

(log n)

)1/2

+ nM,
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because of the auxiliary Lemma 3 (a). So expression II is ≪ n2

D(log n)A since

we have D(log n)B = V ≤ M ≤ n/V in case II, and since D(log n)B ≪ v ≪
n

D(log n)B for B ≥ 2A + 1.

Now consider case I: Then the left hand side becomes (again m∗ denotes the
inverse of m mod d):

I :=
∑

(c,d)=1

∣

∣

∣

∣

∑

m∼M
(m,d)=1

am

∑

k≤n/m
km≡c(d)

e(αmk)

∣

∣

∣

∣

2

≤
∑

(c,d)=1

M
∑

m∼M
(m,d)=1

∣

∣

∣

∣

∑

k≤n/m
k≡cm∗(d)

e(αmk)

∣

∣

∣

∣

2

≤M
∑

m∼M

∑

(c,d)=1

∣

∣

∣

∣

∑

k≤n/m
k≡c(d)

e(αmk)

∣

∣

∣

∣

2

=M
∑

m∼M

∑

(c,d)=1

∑

k≤n/m
k≡c(d)

e(αmk)
∑

k′≤n/m
k≡k′(d)

e(−αmk′)

=M
∑

m∼M

∑

k≤n/m
(k,d)=1

∑

k′≤n/m
k≡k′(d)

e(αm(k − k′))

≤M
∑

m∼M

∑

k≤n/m

∣

∣

∣

∣

∑

l≥(k−n/m)/d
l≤(n/m−1)/d

e(αmdl)

∣

∣

∣

∣

≪M
∑

m∼M

∑

k≤n/M

(

min

(

n

md
, ||αmd||−1

)

+ 1

)

≪n
∑

m∼M

min

(

n

md
, ||αmd||−1

)

+ Mn

≪n
∑

L∼Md

min

(

n

L
, ||αL||−1

)

+ Mn

≪n

(

n

v
+ Md + v

)

(log n) + Mn,

using auxiliary Lemma 3 (b). Now we get I ≪ n2

D(log n)A since D(log n)B ≪

11



v ≪ n
D(log n)B with B ≥ A+1 and since Md ≪ V 2d ≪ D3(log n)B ≪ n

D(log n)B

for D ≤ n1/4(log n)−θ and θ ≥ B/2. So Lemma 2 is shown. �

Final remark. As was kindly pointed out to me by Z. Cui, it is possible
to improve the statement on the major arcs such that Theorems 1, 2 and 3
hold for the improved exponent 1/4 instead of 1/5. The idea for this major
arc improvement comes from Z. Cui in [3].
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