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Abstract. We prove a theorem giving arbitrarily long explicit sequences
x1, . . . , xs of algebraic numbers such that any nonzero polynomial f(X)
satisfying f(x1) = · · · = f(xs) = 0 has nonscalar complexity > C

√
s for

some positive constant C independent of s. A similar result is shown for
rapidly growing rational sequences.

1. Introduction

Let k be an infinite field. For polynomials f ∈ k[X] let L(f) be the non-
scalar complexity of f , i.e. the minimum number of nonscalar multiplica-
tions/divisions necessary to compute f . It is well known that L(f) ≤ 2

√
n

where n is the degree of f (Paterson and Stockmeyer [6], see also Bürgisser et
al. [4]).

In the following we are concerned with lower bounds for L(f). The first non-
trivial lower bounds for specific polynomials were obtained by Strassen [7]. His
methods apply to polynomials with sufficiently independent algebraic coeffi-
cients like f =

∑n
i=1

√
piX

i (pi the i-th prime), or to polynomials with rapidly

growing rational coefficients like f =
∑n

i=1 22i
X i, giving a lower bound of order

√

n
log n

in both cases.

Heintz and Morgenstern [5] proved a general theorem on the complexity of
polynomials given by their roots. For f =

∏n
i=1(X −√

pi) they obtained again

a lower bound of order
√

n
log n

(see also Baur [3]).

For f =
∏n

i=1

(

X − 22i
)

a similar result was shown in Aldaz et al. [1].
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The aim of this paper is to exhibit specific polynomials f such that a nontrivial
lower bound can be proved not just for L(f) but for min{L(fh) : 0 6= h ∈ k[X]},
i.e. for all nonzero polynomials from the ideal generated by f . An example is the

polynomial f =
∏n

i=1

(

X − 22i
)

from above: We show that for sufficiently large

n we have L(fh) > 1
3
n

1

3 for all 0 6= h ∈ C[X] (Corollary 3.2). Similar results
are obtained for polynomials f =

∏n
i=1 (X − xi) whose roots xi are sufficiently

independent algebraic numbers of high degree (Corollary 3.1). The polynomial
f =

∏n
i=1

(

X −√
pi

)

however is out of reach of the present methods. The
reason is that there is a multiple f · ∏n

i=1

(

X +
√

pi

)

=
∏n

i=1 (X2 − pi) of f

which is a polynomial of degree 2n whose coefficients are integers of moderate
size. To our knowledge no nontrivial lower bound for the complexity of a
polynomial of this kind has ever been proved.

2. The Theorem.

The main result is the following

Theorem 2.1. For all sufficiently large positive integers r, s such that 4r2 ≤
s ≤ 2r there exists a nonvanishing polynomial q(X1, . . . , Xs) of degree ≤ 23r

in each indeterminate Xi and with integer coefficients of absolute value ≤ 1
such that for all nonzero polynomials f ∈ k[X] with L(f) ≤ r and all s-tuples
(x1, . . . , xs) of zeroes xi ∈ k of f we have q(x1, . . . , xs) = 0.

The proof relies on methods introduced by Strassen [7].
Recall that the height ht(F ) of a multivariate polynomial F with integer coeffi-
cients is the maximum of the absolute values of its coefficients, and the weight
wt(F ) is the sum of the absolute values of its coefficients.

We will use the following version of the representation theorem for polynomials
of complexity r. (A proof of a closely related variant of this theorem can be
found in Bürgisser et al. [4].)

Representation Theorem 2.2. For any integer r ≥ 1 there exists a poly-
nomial F (Z, X) ∈ Z[Z1, . . . , Z(r+2)2 , X] such that

(i) degX F ≤ 2r, degZ F ≤ 2r+1r,
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(ii) wt F ≤ 222r2

,

(iii) for any polynomial f ∈ k[X] such that L(f) ≤ r the following holds:
For almost all ξ ∈ k there exist η1, . . . , η(r+2)2 ∈ k such that f(X + ξ) =
F (η, X).

Remark 2.3. Any polynomial f such that L(f) ≤ r has degree ≤ 2r. This
is the reason for truncating the “generic power series of complexity r” to a
polynomial F (Z, X) of degree 2r in X.

We will also make use of

Siegel’s Lemma 2.4. (see e.g. [2], p. 13) Let l1, . . . , lM ∈ Z[X1, . . . , XN ] be
linear forms of weight ≤ w for some positive integer w. If N > M then there
exists a nontrivial vector x = (x1, . . . , xN) ∈ ZN such that l1(x) = · · · =
lM (x) = 0 and

|xi| ≤ w
M

N−M , 1 ≤ i ≤ N.

We start the proof of the theorem with

Lemma 2.5. For all sufficiently large positive integers r, s such that 4r2 ≤ s ≤
2r there exists a nonvanishing polynomial

Q =
∑

0≤j1,...,js<2r

qj(X1, . . . , Xs)Y
j1
1 · · ·Y js

s ∈ Z[X, Y ]

in independent indeterminates X, Y such that

(i) degXi
qj ≤ 23r for all i, j,

(ii) ht qj ≤ 1 for all j,

(iii) for all f ∈ k[X] such that L(f) ≤ r we have

Q(X1, . . . , Xs, f(X1), . . . , f(Xs)) = 0.
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Proof. Fix r and s according to the hypothesis. Let F (Z1, . . . , Z(r+2)2 , X) be
the polynomial from the Representation Theorem. Replace the indeterminate
Yi in the unknown polynomial Q by F (Z, Xi) and consider

∑

0≤j1,...,js<2r

qj(X)F (Z, X1)
j1 · · ·F (Z, Xs)

js = 0 (2.1)

as a system L of homogeneous linear equations for the unknown coefficients of
the polynomials qj . Then the number N of unknowns is

N =
(

23r + 1
)s · 2rs ≥ 24rs

whereas the number M of linear equations equals the number of monomials in
Z, X occurring in (2.1). Therefore, for sufficiently large r, we get

M ≤
(

degZ F · 2rs
)(r+2)2 ·

(

23r + degX F · 2r
)s

≤ 23r3+o(r3) ·
(

23r + 22r
)s

≤ 23r3+3rs+s+o(r3),

since s ≤ 2r. Hence

N − M ≥ 24rs
(

1 − 2−rs+3r3+s+o(r3)
)

≥ 24rs−1

since s ≥ 4r2 and r is large.
This shows N > M and, again using s ≥ 4r2,

M

N − M
≤ 23r3+3rs+s−4rs+o(r3)

≤ 2−(r−1)s+3r3+o(r3)

≤ 2−r3/2

if r is large.

The sum of the absolute values of the coefficients of any of the linear equations
from L can be estimated from above by the weight of the polynomial in (2.1)
where the coefficients of the qj are considered as new indeterminates. Therefore,
using subadditivity and submultiplicativity of the weight and the weight bound
from the Representation Theorem

w ≤ 2rs ·
(

23r + 1
)s · 222r2

2rs ≤ 223r2
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if r is large. Hence

w
M

N−M ≤ 223r2

·2−r3/2 −→ 1 (2.2)

if r → ∞.

Now we apply Siegel’s Lemma to the system L. Using N > M and (2.2) we
get a nontrivial integer solution whose components are of absolute value ≤ 1,
i.e. polynomials qj satisfying (i) and (ii).

In order to finish the proof let f ∈ k[X] be a polynomial with L(f) ≤ r. Using
(2.1) and the Representation Theorem we obtain

Q(X1, . . . , Xs, f(X1 + ξ), . . . , f(Xs + ξ)) = 0

for almost all ξ ∈ k. Since k is infinite we conclude

Q(X1, . . . , Xs, f(X1), . . . , f(Xs)) = 0.

2

Proof. (Proof of the theorem.) Let j = (j1, . . . , js) be the lexicographically
first s-tuple such that the coefficient qj of the polynomial Q from the lemma is
nonzero. We show that q = qj satisfies the theorem. Let f ∈ k[X] be a nonzero
polynomial with L(f) ≤ r and let (x1, . . . , xs) be an s-tuple of zeroes of f . Let
ei ≥ 1 be the multiplicity of the root xi of f . Then

f(X) = (X − xi)
ei · hi(X)

for some hi(X) ∈ k[X] such that hi(xi) 6= 0. Writing

Q(X1, . . . , Xs, f(X1), . . . , f(Xs)) (2.3)

as a polynomial in X1 − x1, . . . , Xs − xs it is easy to see that the coefficient of
the monomial (X1 − x1)

e1j1 · · · (Xs − xs)
esjs is

c = qj(x)h1(x1)
j1 · · ·hs(xs)

js.

By statement (iii) of the lemma the polynomial (2.3) is the zero polynomial.
Hence c = 0 and therefore qj(x) = 0. 2
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3. Applications

For the applications assume k = C.

Corollary 3.1. Let a be a squarefree integer 6= 0,±1. Then for all suffi-

ciently long sequences p1, . . . , ps of pairwise different positive primes pi > 2s
1

2

we have L(f) > 1
3
s

1

2 for any polynomial f ∈ C[X] such that

f(a
1

p1 ) = · · · = f(a
1

ps ) = 0.

Proof. Put xi = a
1

pi , 1 ≤ i ≤ s. Then

[Q(xi) : Q] = pi, (3.4)

and therefore, since the pi are different primes,

[Q(x1, . . . , xs) : Q] = p1 · · · ps. (3.5)

Put r = b1
3
s

1

2 c. Then 4r2 ≤ s.
Now apply the theorem to get a polynomial q(X1, . . . , Xs) with the properties
stated there.
Since the degree of q in each indeterminate is ≤ 23r ≤ 2s1/2

< [Q(xi) : Q] we
obtain q(x) 6= 0 by (3.4) and (3.5). Therefore L(f) > r. 2

Corollary 3.2. For all sufficiently long sequences y1, . . . , yn of complex num-
bers such that 2 ≤ |y1| and |yi|2 ≤ |yi+1| for 1 ≤ i < n any nonzero polynomial

f ∈ C[X] such that f(y1) = · · · = f(yn) = 0 has nonscalar complexity > 1
3
n

1

3 .

Remark 3.3. The sequence yi = 22i
clearly satisfies the hypotheses of the

Corollary.

Proof. Put r = b1
3
n

1

3 c, d = 3r + 1 and s = bn
d
c. Then, for sufficiently large

n,

s ≥ n

3r + 1
− 1 ≥ n

n
1

3 + 1
− 1 ≥ n

2

3 + o(n
2

3 ) ≥ 4r2.

For 1 ≤ i ≤ s put xi = yid.
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Arguing as in the proof of the first Corollary it suffices to show that for suffi-
ciently large s we have q(x1, . . . , xs) 6= 0 for any nonzero polynomial

q(X1, . . . , Xs) =
∑

j

ajX
j1
1 · · ·Xjs

s

of degree ≤ 23r in each indeterminate and with integer coefficients aj of absolute
value ≤ 1.
First note that for any 1 ≤ i < s

∣

∣

∣
x2d

i

∣

∣

∣
=

∣

∣

∣
y2d

id

∣

∣

∣
≤

∣

∣

∣
y2d−1

id+1

∣

∣

∣
≤ · · · ≤

∣

∣y(i+1)d

∣

∣ = |xi+1|

and therefore

2
∣

∣

∣
x2d−1

1 x2d−1
2 · · ·x2d−1

i

∣

∣

∣
≤

∣

∣

∣
x2d

1 x2d−1
2 · · ·x2d−1

i

∣

∣

∣

≤
∣

∣

∣
x2d

2 x2d−1
3 · · ·x2d−1

i

∣

∣

∣

...

≤ |xi+1| .

Using this inequality an easy induction with respect to the antilexicographic
ordering < on S = {0, 1, . . . , 2d − 1}s shows that for any j ∈ S

∑

l<j

∣

∣xl1
1 · · ·xls

s

∣

∣ <
∣

∣x
j1
1 · · ·xjs

s

∣

∣ .

Since degXi
q ≤ 23r ≤ 2d − 1 the set S contains all indices l such that al 6= 0.

Therefore, if j = max{l ∈ S : al 6= 0} then

∑

l 6=j

|al| ·
∣

∣xl1
1 · · ·xls

s

∣

∣ <
∣

∣x
j1
1 · · ·xjs

s

∣

∣ .

Hence q(x) 6= 0. 2

Remark 3.4. If the roots yi of f in Corollary 3.2 grow even faster, e.g. yi =
22ni

(1 ≤ i ≤ n) then, putting r = b1
2
n

1

2 c, s = n and xi = yi, the same proof

gives 1
2
n

1

2 as lower bound for the nonscalar complexity of f .
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