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Abstract: We study the number of solutions in Goldbach's problem,

where the primes are taken from arithmetic progressions as well as from

short intervals. For this, we show mean value theorems in the style of

Bombieri-Vinogradov's theorem and apply them in a sieve argument to

get results for Goldbach's problem with primes from short intervals such

that pi + 2, i = 1, 2, 3, are almost-primes.



Binary mean value theorems and ternary consequences

Corollaries using Sieve Theory

The limits when putting conditions on the primes



A binary theorem of Kawada

As a special case of [Kawada 1993], the following is known:

Theorem: Let X
2/3
1

LC < Y , Q ≤ YX
−1/2
2

L−B , X2 +Y ≤ X1. Then∑
q≤Q

max∗
a (q)

∑
k∈[X1,X1+Y ]

∣∣∣ ∑
p2+p3=2k
p2≡a (q)

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k , q, a)Y
∣∣∣

� Y 2L−A.

Originally: X1 = 2X2, but the proof works also for any
X2 ≤ X1 − Y .

A similar variant is true if p2+ p3 = 2k is replaced by p2− p3 = 2k .

We can put easily an additional condition on 2k , namely such that
2k lies in an arithmetic progression (AP):
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Corollary with 2k in AP

Theorem 1:
Let X

2/3
1

LC < Y , Q2 ≤ YX
−1/2
2

L−B and X2 + Y ≤ X1. Then, for
�xed a1, a2 ∈ N and X1 > a1, we have∑
q1≤Q1

∑
q2≤Q2

∑
k∈[X1,X1+Y ]
2k≡a1 (q1)

∣∣∣ ∑
p2+p3=2k
p2≡a2 (q2)

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k , q2, a2)Y
∣∣∣

� Y 2L−A.

If in addition Q1 ≤ Y 1/2LD holds for some �xed D > 0, then the
estimate holds true with maxa1 (q1) inserted after

∑
q1≤Q1

. Also
maxa2 (q2) can be inserted after

∑
q2≤Q2

.
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Simple tools

This can be proven quickly using the following Lemmas:
Lemma 1:
Let a ∈ N be �xed, Q ≥ 1, N ∈ N with N > a and
vN , . . . , v2N−1 ∈ C. Then∑

Q≤q<2Q

∣∣∣ ∑
N≤n<2N
n≡a (q)

vn

∣∣∣� N1/2(logN)3/2
( ∑
N≤n<2N

|vn|2
)1/2

.

Lemma 2:
Let Q ≥ 1, N ∈ N with N ≥ 1 and vN , . . . , v2N−1 ∈ C. Then∑
Q≤q<2Q

max
a (q)

∣∣∣ ∑
N≤n<2N
n≡a (q)

vn

∣∣∣� (N log2Q+Q2)1/2
( ∑
N≤n<2N

|vn|2
)1/2

.

Both Lemmas are simple consequences of Halasz-Montgomery's
inequality.
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A ternary mean value theorem as corollary

The following theorem can be deduced for the ternary Goldbach
problem with extra conditions on the primes:

Corollary 1:

Let X
2/3
1

LC ≤ Y , X
3/5+ε
2

≤ Y , and Qi ≤ YX
−1/2
i L−B for i = 1, 2.

Let n ≥ X1 + X2 + 2Y be odd. Then∑
q1≤Q1

max∗
a1 (q1)

∑
q2≤Q2

max∗
a2 (q2)∣∣∣ ∑

p1+p2+p3=n
pi∈[Xi ,Xi+Y ], i=1,2
pi≡ai (qi ), i=1,2

log p1 log p2 log p3 − T(n, q1, a1, q2, a2)Y
2

∣∣∣
� Y 2L−A.

Proof: Sum up over 2k = n − p1 instead of p1 and insert the
estimate of the previous theorem. The correct singular series is
obtained.
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Getting prime ranges of di�erent length
Disadvantage in above Theorems: Same magnitude Y for the
interval length of p1 and p2 necessary in the proof.

The well known Theorem of [Perelli/Pintz 1993] states:

If X
1/3+ε
1

� R � X1, then∑
2k∈[X1,X1+R]

∣∣∣ ∑
p2+p3=2k

log p2 log p3 −S(2k)2k
∣∣∣2 � RX 2

1 L
−A.

Can we put extra conditions on the primes?
Especially a short interval condition?

Using minor adaptions, we can deduce:
Theorem 2:
Let Y 1/3+ε � R � Y � X1 − X2 − Y ≥ 0 and
X

3/5+ε
2

� Y � X2, then∑
2k∈[X1,X1+R]

∣∣∣ ∑
p2+p3=2k

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k)Y
∣∣∣� RYL−A.
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Putting an AP-condition on 2k

Using both lemmas, we deduce as above:

Theorem 3:
Let Y 1/3+ε � R � Y � X1−X2−Y ≥ 0 and X

3/5+ε
2

� Y � X2.
Fix a ∈ N. Then, for X1 > a,∑
q≤Q

∑
2k∈[X1,X1+R]

2k≡a (q)

∣∣∣ ∑
p2+p3=2k

p2∈[X2,X2+Y ]

log p2 log p3 −S(2k)Y
∣∣∣� RYL−A.

If in addition Q ≤ R1/2LD , the same estimate holds with maxa (q)
inserted after

∑
q≤Q .
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Another ternary corollary

Again, we deduce for the ternary Goldbach problem in the same
way as above (with Y1 = R and Y2 = Y ):

Corollary 2:

Let n be odd, Y
1/3+ε
2

� Y1 � Y2 � n − X1 − Y1 − X2 − Y2 ≥ 0

and X
3/5+ε
i � Yi for i = 1, 2. Let n ≥ X1 + Y1 + X2 + Y2 be odd.

Then, for Q ≤ Y1X
−1/2
1

L−B ,∑
q≤Q

max∗
a (q)

∣∣∣ ∑
p1+p2+p3=n

pi∈[Xi ,Xi+Yi ], i=1,2
p1≡a (q)

log p1 log p2 log p3 − T(n, q, a)Y1Y2

∣∣∣
� Y1Y2L

−A.



Binary mean value theorems and ternary consequences

Corollaries using Sieve Theory

The limits when putting conditions on the primes



Corollaries

Corollary 3:
For all but � YL−A even integers 2k 6≡ 2 (6) with
k ∈ [X1,X1 + Y ], the equation 2k = p2 + p3 is solvable in primes
p2, p3 such that p2 + 2 = P3, p2 ∈ [X2,X2 + Y ], where X θ

2
= Y

with θ ≥ 0.861, and X2 + Y ≤ X1, X
2/3+ε
1

� Y .

Proof: Theorem 9.3 in [Halberstam/Richert], using Theorem 1
above.

Corollary 4:
Let Y be large and consider an odd integer n 6≡ 1 (6) with
n ≥ X1 + X2 + 2Y . Then the equation n = p1 + p2 + p3 is solvable
in primes p1, p2, p3 such that (p1 + 2)(p2 + 2) = P9, where
pi ∈ [Xi ,Xi + Y ], X θi

i = Y , with θi ≥ 0.933, i = 1, 2.

Proof: Theorem 10.3 in [Halberstam/Richert], using Corollary 1
(beginning with the result of [Kawada]) above.
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A similar result using a counting argument

Corollary 5:
Let X θ1

1
= Y = X θ2

2
be large, where θ1 ≥ 0.971 and θ2 ≥ 0.861.

Let n be an odd integer n 6≡ 1 (6) with
X1 + X2 + 2Y ≤ n < Y 3/2−ε. Then the equation n = p1 + p2 + p3
is solvable in primes p1, p2, p3 such that p1 + 2 = P2, p2 + 2 = P3

and pi ∈ [Xi ,Xi + Y ], i = 1, 2.

Proof: Counting argument using Corollary 3 and the result of [Wu
2004] on the number of Chen primes (= primes p with p + 2 = P2)
in short intervals [X ,X + X θ] with θ ≥ 0.971.

Corollary 5 cannot be deduced from Corollary 4 since
0.971 > 0.933.
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Another similar result with di�erent interval lengths

Corollary 6:
Let X θ1

1
= Y1 be large with θ1 ≥ 0.861, let X θ2

2
= Y2 with

θ2 > 3/5, and let Y
1/3+ε
2

� Y1 � Y2. Let n be an odd integer
n 6≡ 1 (6) with Y2 � n − X1 − Y1 − X2 − Y2 > 0. Then the
equation n = p1 + p2 + p3 is solvable in primes p1, p2, p3 such that
p1 + 2 = P3 and pi ∈ [Xi ,Xi + Yi ], i = 1, 2.

Proof: Theorem 9.3 in [Halberstam/Richert], using Corollary 2
(beginning with the result of [Perelli/Pintz]) above.
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Binary mean value theorems and ternary consequences

Corollaries using Sieve Theory

The limits when putting conditions on the primes



A conjectured generalization

All theorems so far can be deduced by the following single estimate,
what we state as
Conjecture:∑
2r∈[X1,X1+R]

∑
q≤Q

max∗
a(q)

∣∣∣ ∑
p2∈[X2,X2+Y ]

p2≡a (q)
p2+p3=2r

log p2 log p3−S(2r , q, a)Y
∣∣∣� RY

LA

for Q � Y 1/2L−B , Y θ � R � Y and some 0 < θ < 1.
(Also for a �xed a ∈ N with weaker restriction on Q.)
The same should be true in the variant p2 − p3 = 2r .

This is an estimate in the style of Bombieri-Vinogradov's theorem.
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A BDH-variant of the conjecture is true

Balog, Cojocaru, David (2010): Koblitz' Conjecture is true on
average.

They prove and apply a Barban-Davenport-Halberstam-variant of
the stated conjecture (where maxa is replaced by

∑
a).

But the stated conjecture is open!

The major arc contribution can be shown to be admissible using
standard techniques.

But the minor arc estimate seems to be di�cult!

Further open: What about extra conditions on the second prime in
binary theorems? Or the third prime in ternary theorems?
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Thank you!
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