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What is sieve theory about?

Starting Point: The ancient sieve of Eratosthenes
producing a list of primes:

Take A= {1,...,100},

then cross out all n € A with 2| n,

then all n € A with 3 | n,

then all n € Awith 5| n

(multiples of 4 have already been crossed out),
and soon ...

Stop when all multiples of integers < 10 = /100 are crossed out.

The remaining numbers must be the primes € {10,...,100}, since
every composed integer < 100 has a prime divisor < 10 = /100
and was therefore crossed out in the algorithm.
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Basic sieve notation

Consider a finite set of objects A and let P be a set of positive
prime numbers such that for each p € P there is associated a

subset A, of A.

The general sieve problem is then to give upper and lower bounds
for the cardinality of the sieved set

S(A,P) = A\ | A,

peP

For a real z > 1 define P(z) := [[pcp p. The goal is to estimate
p<z

S(A,P,z) = #(A\UP|P(Z) .Ap), which we call the sieve function.
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The sieve function in the sieve of Eratosthenes

The sieve of Eratosthenes is the standard example:

For a real x > 1 (above: x =100) let A:={neN; n<x}, let P

be the set of all primes, let /x < z < x and P(z) := [[pep p-
p<z
Further let A, := {n € A; p| n}. Then the sieve function is

S(AP2) = #(A\ | )
pIP(2)
=#{ne A (p|n=p>z)forall pec P}
=#{n < x; ged(n, P(z)) =1}
= 7(x) = n(2),

where 7(x) := #{p < x; p prime} denotes the prime number
counting function.
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Results for the prime counting function

Using sieve theory, the expected bounds C1$ < m(x) < C2$
with constants 0 < (7 < 1 < ( can be shown, but the prime
number theorem

X 7(x)

log x x—o0 x / log x

(x)

can not be reached this way.

But if z < log x, sieve theory shows that

e Tx

#{n < x; gcd(n, P(z)) =1} ~ gz’

with v 1= limp_,00(34_q § — logn) = 0,57721 ... being the
Euler—Mascheroni constant.
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For a real x > 1 let A:={n € N; n < x}, let P be the set of all
primes p # 2, let /x < z < x and P(z) := []pep p.

p<z
Now let A, :=={n€ A; n=0mod p or n=—2 mod p}.

Then ma(x) < w(z) + S(A, P, z), where

ma(x) := #{p < x; p,p+2 prime}

denotes the twin prime counting function.
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Sieve theory today

The starting point of the enormous development of modern sieve

theory was Brun’s sieve in the 1920ies. Applied to the twin prime

problem, it shows that the set of twin primes is small compared to
H . X

the set of all primes: m(x) < ogx ° that

ZpET% converges, if p runs through the set 7 of twin primes.

Modern sieve theory provides nowadays a collection of sieve

theorems giving estimates for sieve functions. Often, they involve

very elaborated ideas in their proofs. These theorems can be used

as tools in applications, like a “black box”.

Many of them have been applied in the classical branch of prime
number theory where they have been created for, but today they
also occur in several other branches of mathematics.
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1. Primes in short intervals

Does the real interval [n, n + \/n[ contain primes for all large
n € N7 This is an open conjecture.

Under assumption of Riemann’s hypothesis, there exist primes in all
intervals [n, n + n'/2*¢[ with large n, for any € > 0.

Unconditionally, it is proved that there are primes in intervals of the
form [n, n + n'*/29[ for all large n [G. Harman 2007].

Further, if Riemann’s hypothesis is assumed, almost all intervals
[n, n + log? n[ with n < X (with the exception of o(X) many)
contain primes.
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2. Primes represented by polynomials

If f(x) € Z[x] is a nonconstant irreducible polynomial with positive
leading term, and if f(n) has no fixed prime divisor for n € N, does
f(n) will take on infinitely many prime values? This is an open
conjecture.

Dirichlet’s Theorem shows that this is true for linear f, but there
are no known results for higher degree, except special cases.

For polynomials in two variables, the case m? + n? is well
understood, and also other quadratic cases.

Other results towards higher-degree analogs: m? + n* takes on
prime values infinitely often [J. Friedlander and H. Iwaniec 1989].

x3 + 2y3 similar [D. R. Heath-Brown 2001].
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3. Diophantine Approximation

It is known that if a € R is irrational, then there are infinitely many
pairs of coprime integers m, n with o — | < ,71—2

But can we hope to get infinitely many solutions to
la = 7] < ﬁ, for some fixed 0 < 6§ <17

Assuming stronger conjectures than the GRH, this is true for

0<6<1/3.
The statement is false for # = 1: There are uncountably many «
such that |
ogp
< e —
el 500p log log p

has only finitely many solutions in primes p, where
||| :== minmez |x — m| [G. Harman 1995].
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4. Primes in arithmetic progressions

Question: What is the smallest prime in an arithmetic progression?

So, for a given residue class a mod g with ged(a, g) = 1, we ask for
the size of prin(q,a) := Min{p prime; p =a mod q}.

Y. Linnik showed in [1944] that there is an absolute constant L > 0
such that pmin(q,a) < gt, called Linnik's constant.

This can be done using the classical zero-free region for L-functions.
We know today by Bombieri-Vinogradov's theorem, that

Prmin(q,a) << q°T° is true for almost all g. This bound is predicted to
hold for all g by the GRH.
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1. p-adic zeros of quadratic forms

A problem of J.-P. Serre [1990] concerning the quadratic form
©0ap(X,Y,Z) =aX?+ bY? — Z2: For how many positive integers
a and b does @, , have a nontrivial rational zero? By the
Minkowski local-global principle, one asks for the p-adic solutions
for every prime p. There exists a p-adic solution iff the Hilbert
symbol satisfies (%’) =1

Answer: The number of pairs (a, b) with 1 < a, b < H for which
©ap has a nontrivial rational zero is < H?/log log H.

More accurate: Let P be an infinite set of odd primes. If the set
Pp:={peP; (%) = —1} is sufficiently large such that

Zpepb % = 00, then for almost all squarefree a being coprime with
2b, the quadratic form ¢, p, fails to have a nontrivial p-adic zero for

at least one p € P.
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2. Rational points on cubic surfaces

Consider cubic surfaces F(x) = ¢(u, v), where F is a cubic
polynomial and ¢(u, v) a binary quadratic form.

Under some mild conditions, there are infinitely many rational
points on Chatelet-surfaces where ¢(u, v) = u? — cv? [H. Iwaniec
and R. Munshi, 2010]. Even some strong estimates can be given for
the number of such points with bounded height.

E.g. the case ¢ = —1: Let F(X) = X3 +aX? + BX +v € Z[X]
with & + B8+~ =0 mod 4. Then F(x) = u? + v? has infinitely
many rational points (x, u, v). The number of such rational points
having denominators at most y is > y(log y)~3/2.
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3. Points on elliptic curves

A problem of twin prime type on elliptic curves:
Consider an elliptic curve E/Q.

Koblitz' conjecture: There are infinitely many p such that the order
of E/FFp is a prime number (after the injection of torsion has been
divided out).

Koblitz' conjecture is true on average

[A. Balog, A. C. Cojocaru, C. David 2011].

3

Further, e.g. for the curve E : y2 = x> — X, It can be shown that

#{p < x; p=1(4), #(E/Fp) =8P2} > x(logx)?,

where P, is a positive integer having at most two prime factors.
The expected asymptotic formula with P, replaced by a prime is an
unsolved conjecture, considered to be as hard as the twin prime
problem itsself.
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4. Probabilistic Galois theory

Let f(x) € Z[x] be a polynomial with leading term 1.
We expect: Gal(f|Q) = S, with probability 1.
Consider

Er(H) :=#{(z1,...,2n); |zi| < H, 1 <i<n,
such that f(x) = x" + z1x" ' + - + z,
has not S, as Galois group}.
One can easily show that the number of reducible f with |z;| < H is
> H™ 1, so that E,(H) > H" L.

It is conjectured that E,(H) <. (H"!**). This bound has been
confirmed for n = 2,3, 4 [P. Lefton 1979, R. Dietmann 2012].

The best known uniform upper bound up to date is
E,(H) < H"'/2 [D. Zywina 2010].
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5. Example in group theory

Question: “For how many n < x is any group of order n cyclic?”

List of isomorphism classes of groups by order:

1 2 3 4 5 6 7
C1 C2 C3 C4, C22 C5 C6 = C3 X C2, 53 C7
8 9 10
Cs, C4 X Cz, C23, Dih4, Qg Cg, C32 C1o = C5 X C2, Dih5

We get the following sequence giving the number of isomorphism
classes of groups: 1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1, 5, 1,
5,2,2,1,152,2,5,4,1,4,1,51,1,2,1,14,1,2,2,14,1, 6, 1,
4,2,2,1,52,2,5/1,5,1,15,2,13,2,2,1,13,1, 2, 4, 267, 1, 4,
1,5,1,4,1,50,1,2,3,4,/1,6,1,52,15,2,1,15,1, 2,1, 12, ...
For which n is there exactly one class of groups in the list (namely
just the cyclic group class)? A theorem in group theory states that
this is true iff ged(n, ¢(n)) = 1 [Szele 1947].
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Example in group theory, the result:

Consider A(x) := #{n < x; gecd(n, ¢(n)) = 1}.

Observation: Note that n with gcd(n, ¢(n)) = 1 is not divisible by a
prime ¢ = 1 mod p for p | n, since otherwise p | gcd(n, ¢(n)).

This can be used for a sieve argument: for each prime p consider
the set of n having p as smallest prime divisor. In this set, cross out
all multiples of primes g =1 mod p.

Erd6s used this sieve argument and splitted the set of n according
to the size of its smallest prime divisor p.

By a tricky combination of Brun's sieve and above mentioned result
of the number of n having no small prime factors, he showed:

Theorem [Erd8s 1948]:

The number A(x) of n < x, for which every group of order n is

%= R e Tx
CyCIlC, 1S A(X) ~ W

Euler—Mascheroni.

for x — oo, and ~y is the constant of
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Linnik's problem

A problem due to Y. Linnik is the size of the smallest nonquadratic

residue mod p, namely of g(p) := min{n € N; (g) = -1}

Vinogradov's conjecture: Ve > 0 Vp > po(e) : q(p) < p°.
Assuming GRH, it was derived that g(p) < (log p)? [Ankeny 1952)].

A theorem of Linnik [1941] shows that exceptions to Vinogradov's
conjecture are very rare: #{p < x; q(p) > p°} <. loglog x.

He used a new sieve method which has been developed intensely
after him.
Today, in its modern form, it is called the large sieve method.

The main ingredient of the large sieve method is an inequality of
exponential sums, the so-called large sieve inequality:




The large sieve inequality

Let {v,} denote a sequence of complex numbers, let M, N € N and
let @ > 1 be a real number. Then
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The large sieve inequality

Let {v,} denote a sequence of complex numbers, let M, N € N and
let @ > 1 be a real number. Then

M= SED DS vne<3n)\2so2+/v_17

g<Q 1<alq M<n<M+N
ged(a,q)=1

where [[v[2 := Y1 ncpgn [Val*, e(a) := exp(2mic) for a € R.

The most important application of the large sieve (together with
combinatorial identities) has been the distribution of primes in APs,
namely Bombieri-Vinogradov's theorem. It states that RH holds on
average for all “moduli” g up to a big bound.

Therefore, sieve methods can provide results so strong that they
compete with the consequences of the RH: Bombieri-Vinogradov's
theorem has many applications.
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The large sieve inequality with power moduli

After replacing the moduli g in the large sieve inequality by powers
of the form g*, one can ask also for good upper bounds of the
resulting exponential sums.

L. Zhao has shown in [2004] the upper bound
Qk+1 + (NQ1—6+ N1_501+k5)N6,

where § := 1/2%71, and conjectured that ¢ := 1 should be the
correct exponent in this bound.

[K. H., 2012] In this bound one can replace § by (2k(k —1))~1.

The proof uses Fourier-methods together with a recent deep result
of T. Wooley on “efficient congruencing”.

[T. Wooley, Ann. of Math. 2012]

Applications of the new k-bound are in progress. ..
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