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What is sieve theory about?

Starting Point: The ancient sieve of Eratosthenes
producing a list of primes:

Take A = {1, . . . , 100},
then cross out all n ∈ A with 2 | n,
then all n ∈ A with 3 | n,
then all n ∈ A with 5 | n
(multiples of 4 have already been crossed out),
and so on . . .

Stop when all multiples of integers ≤ 10 =
√
100 are crossed out.

The remaining numbers must be the primes ∈ {10, . . . , 100}, since
every composed integer ≤ 100 has a prime divisor ≤ 10 =

√
100

and was therefore crossed out in the algorithm.
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Animation of the sieve of Eratosthenes

///01 02 03 04 05 06 07 08 09 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100
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Basic sieve notation

Consider a �nite set of objects A and let P be a set of positive
prime numbers such that for each p ∈ P there is associated a
subset Ap of A.

The general sieve problem is then to give upper and lower bounds
for the cardinality of the sieved set

S(A,P) := A \
⋃
p∈P
Ap.

For a real z ≥ 1 de�ne P(z) :=
∏

p∈P
p<z

p. The goal is to estimate

S(A,P, z) := #
(
A\

⋃
p|P(z)Ap

)
, which we call the sieve function.
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The sieve function in the sieve of Eratosthenes

The sieve of Eratosthenes is the standard example:

For a real x ≥ 1 (above: x = 100) let A := {n ∈ N; n ≤ x}, let P
be the set of all primes, let

√
x < z ≤ x and P(z) :=

∏
p∈P
p<z

p.

Further let Ap := {n ∈ A; p | n}. Then the sieve function is

S(A,P, z) = #
(
A \

⋃
p|P(z)

Ap

)
= #{n ∈ A; (p | n⇒ p ≥ z) for all p ∈ P}
= #{n ≤ x ; gcd(n,P(z)) = 1}
= π(x)− π(z),

where π(x) := #{p ≤ x ; p prime} denotes the prime number
counting function.
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Results for the prime counting function

Using sieve theory, the expected bounds C1
x

log x
≤ π(x) ≤ C2

x
log x

with constants 0 < C1 < 1 < C2 can be shown, but the prime
number theorem

π(x) ∼ x

log x
⇔ lim

x→∞

π(x)

x/ log x
= 1

can not be reached this way.

But if z ≤ log x , sieve theory shows that

#{n ≤ x ; gcd(n,P(z)) = 1} ∼ e−γx

log z
,

with γ := limn→∞(
∑n

k=1
1
k
− log n) = 0, 57721 . . . being the

Euler�Mascheroni constant.
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Another basic example of a sieve

The twin prime sieve:

For a real x ≥ 1 let A := {n ∈ N; n ≤ x}, let P be the set of all
primes p 6= 2, let

√
x < z ≤ x and P(z) :=

∏
p∈P
p<z

p.

Now let Ap := {n ∈ A; n ≡ 0 mod p or n ≡ −2 mod p}.

Then π2(x) ≤ π(z) + S(A,P, z), where

π2(x) := #{p ≤ x ; p, p + 2 prime}

denotes the twin prime counting function.
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Sieve theory today

The starting point of the enormous development of modern sieve
theory was Brun's sieve in the 1920ies. Applied to the twin prime
problem, it shows that the set of twin primes is small compared to
the set of all primes: π2(x)� x

log2 x
, so that

∑
p∈T

1
p
converges, if p runs through the set T of twin primes.

Modern sieve theory provides nowadays a collection of sieve
theorems giving estimates for sieve functions. Often, they involve
very elaborated ideas in their proofs. These theorems can be used
as tools in applications, like a �black box�.

Many of them have been applied in the classical branch of prime
number theory where they have been created for, but today they
also occur in several other branches of mathematics.
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1. Primes in short intervals

Does the real interval [n, n +
√
n[ contain primes for all large

n ∈ N? This is an open conjecture.

Under assumption of Riemann's hypothesis, there exist primes in all
intervals [n, n + n1/2+ε[ with large n, for any ε > 0.

Unconditionally, it is proved that there are primes in intervals of the
form [n, n + n11/20[ for all large n [G. Harman 2007].

Further, if Riemann's hypothesis is assumed, almost all intervals
[n, n + log2 n[ with n ≤ X (with the exception of o(X ) many)
contain primes.
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2. Primes represented by polynomials

If f (x) ∈ Z[x ] is a nonconstant irreducible polynomial with positive
leading term, and if f (n) has no �xed prime divisor for n ∈ N, does
f (n) will take on in�nitely many prime values? This is an open
conjecture.

Dirichlet's Theorem shows that this is true for linear f , but there
are no known results for higher degree, except special cases.

For polynomials in two variables, the case m2 + n2 is well
understood, and also other quadratic cases.

Other results towards higher-degree analogs: m2 + n4 takes on
prime values in�nitely often [J. Friedlander and H. Iwaniec 1989].

x3 + 2y3 similar [D. R. Heath-Brown 2001].
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3. Diophantine Approximation

It is known that if α ∈ R is irrational, then there are in�nitely many
pairs of coprime integers m, n with |α− m

n
| < 1

n2
.

But can we hope to get in�nitely many solutions to
|α− m

p
| < 1

p1+θ , for some �xed 0 < θ ≤ 1?

Assuming stronger conjectures than the GRH, this is true for
0 < θ < 1/3.

The statement is false for θ = 1: There are uncountably many α
such that

‖αp‖ < log p

500p log log p

has only �nitely many solutions in primes p, where
‖x‖ := minm∈Z |x −m| [G. Harman 1995].
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4. Primes in arithmetic progressions

Question: What is the smallest prime in an arithmetic progression?

So, for a given residue class a mod q with gcd(a, q) = 1, we ask for
the size of pmin(q,a) := min{p prime; p ≡ a mod q}.

Y. Linnik showed in [1944] that there is an absolute constant L > 0
such that pmin(q,a) � qL, called Linnik's constant.

This can be done using the classical zero-free region for L-functions.

We know today by Bombieri�Vinogradov's theorem, that
pmin(q,a) � q2+ε is true for almost all q. This bound is predicted to
hold for all q by the GRH.
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4 Linnik's problem and the large sieve



1. p-adic zeros of quadratic forms

A problem of J.-P. Serre [1990] concerning the quadratic form
ϕa,b(X ,Y ,Z ) = aX 2 + bY 2 − Z 2: For how many positive integers
a and b does ϕa,b have a nontrivial rational zero? By the
Minkowski local-global principle, one asks for the p-adic solutions
for every prime p. There exists a p-adic solution i� the Hilbert
symbol satis�es

(
a,b
p

)
= 1.

Answer: The number of pairs (a, b) with 1 ≤ a, b ≤ H for which
ϕa,b has a nontrivial rational zero is � H2/ log logH.

More accurate: Let P be an in�nite set of odd primes. If the set
Pb := {p ∈ P; (b

p
) = −1} is su�ciently large such that∑

p∈Pb
1
p
=∞, then for almost all squarefree a being coprime with

2b, the quadratic form ϕa,b fails to have a nontrivial p-adic zero for
at least one p ∈ P.
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2. Rational points on cubic surfaces

Consider cubic surfaces F (x) = ϕ(u, v), where F is a cubic
polynomial and ϕ(u, v) a binary quadratic form.

Under some mild conditions, there are in�nitely many rational
points on Châtelet-surfaces where ϕ(u, v) = u2 − cv2 [H. Iwaniec
and R. Munshi, 2010]. Even some strong estimates can be given for
the number of such points with bounded height.

E.g. the case c = −1: Let F (X ) = X 3 + αX 2 + βX + γ ∈ Z[X ]
with α+ β + γ ≡ 0 mod 4. Then F (x) = u2 + v2 has in�nitely
many rational points (x , u, v). The number of such rational points
having denominators at most y is � y(log y)−3/2.
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3. Points on elliptic curves

A problem of twin prime type on elliptic curves:
Consider an elliptic curve E/Q.

Koblitz' conjecture: There are in�nitely many p such that the order
of E/Fp is a prime number (after the injection of torsion has been
divided out).
Koblitz' conjecture is true on average
[A. Balog, A. C. Cojocaru, C. David 2011].

Further, e. g. for the curve E : y2 = x3 − x , it can be shown that

#{p ≤ x ; p ≡ 1 (4), #(E/Fp) = 8P2} � x(log x)2,

where P2 is a positive integer having at most two prime factors.
The expected asymptotic formula with P2 replaced by a prime is an
unsolved conjecture, considered to be as hard as the twin prime
problem itsself.
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4. Probabilistic Galois theory

Let f (x) ∈ Z[x ] be a polynomial with leading term 1.
We expect: Gal(f |Q) ∼= Sn with probability 1.

Consider

En(H) := #{(z1, . . . , zn); |zi | ≤ H, 1 ≤ i ≤ n,

such that f (x) = xn + z1x
n−1 + · · ·+ zn

has not Sn as Galois group}.

One can easily show that the number of reducible f with |zi | ≤ H is
� Hn−1, so that En(H)� Hn−1.

It is conjectured that En(H)�n,ε (H
n−1+ε). This bound has been

con�rmed for n = 2, 3, 4 [P. Lefton 1979, R. Dietmann 2012].

The best known uniform upper bound up to date is
En(H)� Hn−1/2 [D. Zywina 2010].
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5. Example in group theory

Question: �For how many n ≤ x is any group of order n cyclic?�

List of isomorphism classes of groups by order:
1 2 3 4 5 6 7

C1 C2 C3 C4, C
2
2 C5 C6 = C3 × C2, S3 C7

8 9 10

C8, C4 × C2, C
3
2 , Dih4, Q8 C9, C

2
3 C10 = C5 × C2, Dih5

. . .

We get the following sequence giving the number of isomorphism
classes of groups: , , , 2, , 2, , 5, 2, 2, , 5, , 2, , 14, , 5, , 5, 2, 2, ,
15, 2, 2, 5, 4, , 4, , 51, , 2, , 14, , 2, 2, 14, , 6, , 4, 2, 2, , 52, 2, 5,
, 5, , 15, 2, 13, 2, 2, , 13, , 2, 4, 267, , 4, , 5, , 4, , 50, , 2, 3, 4, ,
6, , 52, 15, 2, , 15, , 2, , 12, . . .
For which n is there exactly one class of groups in the list (namely
just the cyclic group class)? A theorem in group theory states that
this is true i� gcd(n, ϕ(n)) = 1 [Szele 1947].
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Example in group theory, the result:

Consider A(x) := #{n ≤ x ; gcd(n, ϕ(n)) = 1}.

Observation: Note that n with gcd(n, ϕ(n)) = 1 is not divisible by a
prime q ≡ 1 mod p for p | n, since otherwise p | gcd(n, ϕ(n)).
This can be used for a sieve argument: for each prime p consider
the set of n having p as smallest prime divisor. In this set, cross out
all multiples of primes q ≡ 1 mod p.
Erd®s used this sieve argument and splitted the set of n according
to the size of its smallest prime divisor p.
By a tricky combination of Brun's sieve and above mentioned result
of the number of n having no small prime factors, he showed:

Theorem [Erd®s 1948]:

The number A(x) of n ≤ x , for which every group of order n is

cyclic, is A(x) ∼ e−γx
log log log x

for x →∞, and γ is the constant of
Euler�Mascheroni.
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Linnik's problem

A problem due to Y. Linnik is the size of the smallest nonquadratic
residue mod p, namely of q(p) := min{n ∈ N;

(
n
p

)
= −1}.

Vinogradov's conjecture: ∀ε > 0 ∀p > p0(ε) : q(p) < pε.

Assuming GRH, it was derived that q(p)� (log p)2 [Ankeny 1952].

A theorem of Linnik [1941] shows that exceptions to Vinogradov's
conjecture are very rare: #{p ≤ x ; q(p) ≥ pε} �ε log log x .

He used a new sieve method which has been developed intensely
after him.
Today, in its modern form, it is called the large sieve method.

The main ingredient of the large sieve method is an inequality of
exponential sums, the so-called large sieve inequality:



Linnik's problem

A problem due to Y. Linnik is the size of the smallest nonquadratic
residue mod p, namely of q(p) := min{n ∈ N;

(
n
p

)
= −1}.

Vinogradov's conjecture: ∀ε > 0 ∀p > p0(ε) : q(p) < pε.

Assuming GRH, it was derived that q(p)� (log p)2 [Ankeny 1952].

A theorem of Linnik [1941] shows that exceptions to Vinogradov's
conjecture are very rare: #{p ≤ x ; q(p) ≥ pε} �ε log log x .

He used a new sieve method which has been developed intensely
after him.
Today, in its modern form, it is called the large sieve method.

The main ingredient of the large sieve method is an inequality of
exponential sums, the so-called large sieve inequality:



Linnik's problem

A problem due to Y. Linnik is the size of the smallest nonquadratic
residue mod p, namely of q(p) := min{n ∈ N;

(
n
p

)
= −1}.

Vinogradov's conjecture: ∀ε > 0 ∀p > p0(ε) : q(p) < pε.

Assuming GRH, it was derived that q(p)� (log p)2 [Ankeny 1952].

A theorem of Linnik [1941] shows that exceptions to Vinogradov's
conjecture are very rare: #{p ≤ x ; q(p) ≥ pε} �ε log log x .

He used a new sieve method which has been developed intensely
after him.
Today, in its modern form, it is called the large sieve method.

The main ingredient of the large sieve method is an inequality of
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The large sieve inequality

Let {vn} denote a sequence of complex numbers, let M,N ∈ N and
let Q ≥ 1 be a real number. Then

‖v‖−2
∑
q≤Q

∑
1≤a≤q

gcd(a,q)=1

∣∣∣ ∑
M<n≤M+N

vne
(a
q
n
)∣∣∣2 ≤ Q2 + N − 1,

where ‖v‖2 :=
∑

M<n≤M+N |vn|2, e(α) := exp(2πiα) for α ∈ R.

The most important application of the large sieve (together with
combinatorial identities) has been the distribution of primes in APs,
namely Bombieri�Vinogradov's theorem. It states that RH holds on
average for all �moduli� q up to a big bound.

Therefore, sieve methods can provide results so strong that they
compete with the consequences of the RH: Bombieri�Vinogradov's
theorem has many applications.
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The large sieve inequality with power moduli

After replacing the moduli q in the large sieve inequality by powers
of the form qk , one can ask also for good upper bounds of the
resulting exponential sums.

L. Zhao has shown in [2004] the upper bound

Qk+1 + (NQ1−δ + N1−δQ1+kδ)Nε,

where δ := 1/2k−1, and conjectured that δ := 1 should be the
correct exponent in this bound.

[K. H., 2012] In this bound one can replace δ by (2k(k − 1))−1.

The proof uses Fourier-methods together with a recent deep result
of T. Wooley on �e�cient congruencing�.
[T. Wooley, Ann. of Math. 2012]
Applications of the new k-bound are in progress. . .
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Thank you!
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