Not to hand in! For oral discussion in the exercise class on 11.10.2023

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/

Exercise 1: Permutations in S_{26}

How many $\sigma \in S_{26}$ are there which

- (a) have order 2 (i.e. $\sigma(\sigma(n)) = n$ for all $1 \le n \le 26$),
- (b) have at most k many fix points $(1 \le n \le 26 \text{ with } \sigma(n) = n)$,
- (c) contain no cycle of length > 13?

Exercise 2: Paper-Enigma

Construct the paper-Enigma from the website https://mckoss.com/posts/paper-enigma/paper-enigma.pdf

- (a) Encrypt with it (choosing the given adjustment I-II-III: MCK of the rotors) the plain text "INVOLUTION"
- (b) Which of the three plain texts can not be the beginning of the generated secret text GBDQQBHNWZTA... (from the Enigma in (a)), and why not? WETTERBERICHT, OBERKOMMANDO, KEINEBESONDERENVORKOMMNISSE

Exercise 3: Mini-Enigma

Given an Enigma with alphabet $\sigma = \{A, E, H, N\}$, two rotors and one Reflector. A plain text is known to be "AHNEHANNAHNAHEANNE", which has been encrypted to "HAENAHEE-HAEHANHEEN".

- (a) Give the secret text which is generated by the Enigma (in the same adjustment) for the plain text "NAEHEANNA".
- (b) Give a possible "inner wiring" of the rotors, such that this encryption can be reached by the Enigma.