Hand in: until monday 8.1.2024, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/

Exercise 1: Multiple zeros of a polynomial of degree 3

Let k be a field with char $k \neq 2, 3$. Show: The polynomial $f(x) = x^3 + ax + b \in k[x]$ has multiple zeros if and only if $4a^3 + 27b^2 = 0$. (Hint: $x^3 + ax + b = (x - u)^2(x - v)$ and comparison of coefficients). Explain why the condition char $k \neq 2, 3$ is needed in the proof.

Exercise 2: Elliptic curves over finite fields and addition of points

Consider over the finite field \mathbb{F}_p the equation $y^2 = x^3 + x + 9$ and its solution set $E \subseteq \mathbb{F}_p^2$.

- (a) For which $p \in \{2, 3, 5, 7, 19\}$ is E an elliptic curve?
- (b) Which of the points of E over \mathbb{F}_{19} are intersection points with the line y = x + 6?
- (c) Let p = 19 and let P := (12, 18), Q := (7, 13), $R := (9, 14) \in E$. Compute the intersection point P * Q of the line through P and Q with E, and also the intersection point Q * R of the line through Q and R with E.
- (d) Let P + Q the point which is given as the reflection of P * Q from (c) at the x-axis, and analogously let Q + R be given. Compute that (P + Q) + R = P + (Q + R) holds.

Exercise 3: Curves of degree 3 and tangents

Sketch the following elliptic curves over $k = \mathbb{R}$:

$$E_1: y^2 = x^3 - x$$

 $E_2: y^2 = x^3 + 1$

Sketch also the curves $E_3: y^2 = x^3 + x^2$, $E_4: y^2 = x^3$, which are not elliptic. Determine the tangent in the point P = [0:0:1] of E_1 , and the tangents in the points $Q_{\pm} = [0:\pm 1:1]$ of E_2 .

*** Merry Christmas and a good start for the new year 2024 ***