Hand in: until monday 8.1.2024, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/
Exercise 1: Multiple zeros of a polynomial of degree 3
Let k be a field with char $k \neq 2,3$.
Show: The polynomial $f(x)=x^{3}+a x+b \in k[x]$ has multiple zeros if and only if $4 a^{3}+27 b^{2}=0$.
(Hint: $x^{3}+a x+b=(x-u)^{2}(x-v)$ and comparison of coefficients).
Explain why the condition char $k \neq 2,3$ is needed in the proof.
Exercise 2: Elliptic curves over finite fields and addition of points
Consider over the finite field \mathbb{F}_{p} the equation $y^{2}=x^{3}+x+9$ and its solution set $E \subseteq \mathbb{F}_{p}^{2}$.
(a) For which $p \in\{2,3,5,7,19\}$ is E an elliptic curve?
(b) Which of the points of E over \mathbb{F}_{19} are intersection points with the line $y=x+6$?
(c) Let $p=19$ and let $P:=(12,18), Q:=(7,13), R:=(9,14) \in E$. Compute the intersection point $P * Q$ of the line through P and Q with E, and also the intersection point $Q * R$ of the line through Q and R with E.
(d) Let $P+Q$ the point which is given as the reflection of $P * Q$ from (c) at the x-axis, and analogously let $Q+R$ be given. Compute that $(P+Q)+R=P+(Q+R)$ holds.

Exercise 3: Curves of degree 3 and tangents
Sketch the following elliptic curves over $k=\mathbb{R}$:

$$
\begin{aligned}
& E_{1}: y^{2}=x^{3}-x \\
& E_{2}: y^{2}=x^{3}+1
\end{aligned}
$$

Sketch also the curves $E_{3}: y^{2}=x^{3}+x^{2}, E_{4}: y^{2}=x^{3}$, which are not elliptic.
Determine the tangent in the point $P=[0: 0: 1]$ of E_{1}, and the tangents in the points $Q_{ \pm}=[0: \pm 1: 1]$ of E_{2}.

