Hand in: until monday 11.1.2024, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/

Exercise 1: Order of a point on an elliptic curve

Let E be the elliptic curve over \mathbb{F}_7 with equation $E: y^2 = x^3 + x + 3$.

- (a) Determine the set $E(\mathbb{F}_7)$ of all points on E.
- (b) Which order has the point $P = (4, 1) \in E(\mathbb{F}_7)$?
- (c) Show that $E(\mathbb{F}_7) \cong \mathbb{Z}_6$, i.e. $E(\mathbb{F}_7)$ is cyclic of order 6.

Exercise 2: Group structure of elliptic curves

Let E_1 and E_2 be the elliptic curves over \mathbb{F}_{11} with equations $E_1 : y^2 = x^3 + x + 1$ and $E_2 : y^2 = x^3 + x$. Determine the group structure of $E_1(\mathbb{F}_{11})$ and $E_2(\mathbb{F}_{11})$.

Exercise 3: The criterion with discriminants

Let \mathcal{C} be a curve over \mathbb{C} with affine equation $y^2 = x^3 + ax^2 + bx + c$. Compute the discriminant $\Delta(\mathcal{C})$. For which c defines the equation $y^2 = x^3 - 4x^2 + c$ an elliptic curve $E(\mathbb{C})$?