Hand in: until monday 22.1.2024, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/
Exercise 1: Points of order 3
What is a geometric condition on P having order 3?
Let E be the elliptic curve with affine equation $y^{2}=x^{3}+a x+b$ over a field k with $\operatorname{char}(k) \neq 2,3$. Prove: A point $P=(x, y) \in E(k)$ has order 3 if and only if $3 x^{4}+6 a x^{2}+12 b x-a^{2}=0$ holds.

Exercise 2: Number of points on elliptic curves over finite fields
Let $p>2, E: y^{2}=x^{3}+a x+b$ be an elliptic curve over \mathbb{F}_{p} and

$$
\left(\frac{a}{p}\right)= \begin{cases}0, & a=0 \\ 1, & \exists b \in \mathbb{F}_{p}, b \neq 0: b^{2}=a \\ -1, & \text { else }\end{cases}
$$

the generalized Legendre symbol. Prove:
(a) $\# E\left(\mathbb{F}_{p}\right) \leq 2 p+1$.
(b) $\# E\left(\mathbb{F}_{p}\right)=p+1+\sum_{x \in \mathbb{F}_{p}}\left(\frac{x^{3}+a x+b}{p}\right)$.
(c) Consider the elliptic curve $E: y^{2}=x^{3}+x+1$ over \mathbb{F}_{7}. Compute $\# E\left(\mathbb{F}_{7}\right)$ by using (b).

Exercise 3: Bisection points
Let k be a field with $\operatorname{char}(k) \neq 2,3$ and $E(k)$ the elliptic curve with affine equation $y^{2}=f(x):=$ $x^{3}+a x+b$. A point $P \in E(k)$ is called bisection point, if $2 P=O$ holds.
Prove: $E(k)$ has one, two or four bisection points.
Is the case of having exactly one bisection point actually occuring?

