Hand in: until monday 06.11.2023, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/

Exercise 1: The order of a power in a cyclic group
Let G be a finite cyclic group with generator $a \in G$.
Show that $\operatorname{ord}\left(a^{j}\right)=\frac{\operatorname{ord}(a)}{(j, \operatorname{ord}(a))}$ holds for all $j \in \mathbb{Z}$.
Use this to calculate the order of $\underline{5}^{11}$ in the subgroup $H=\langle\underline{5}\rangle$ of the group $G=\mathbb{Z}_{5963}^{\times}$.

Exercise 2: Calculation of $\varphi(N)$ and factorizing N
Let $p \neq q$ be primes and $N=p q$. Show:
The primes p and q are exactly the roots of the quadratic polynomial

$$
T^{2}-(N+1-\varphi(N)) T+N
$$

Thus anyone who knows $\varphi(N)$, can factorize N. (In other words: the calculation of $\varphi(N)$ is as difficult as factorizing N.)
Use this to calculate the prime factors of $N=542029$ with

$$
\varphi(N)=540540 .
$$

* Do you know a paper-algorithm for taking square roots in \mathbb{N} ? Has in a short running time in general?

