Hand in: until monday 13.11.2023, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/
Exercise 1: Coding text in the RSA-protocol
Consider the RSA-modul $n=22499$ for a RSA-encryption, for which $27^{3} \leq n \leq 29^{3}$ holds, and $n \leq 27^{4}$.
Plain texts in the plain-text-alphabet $\mathrm{A} \mapsto 1, \ldots, \mathrm{Y} \mapsto 25, \mathrm{Z} \mapsto 0$, space $\mapsto 26$, are split into blocks of three numbers from 0 to 26 each, thus e.g. „KLARTEXT " = 11, 12, 1/ 18, 20, 5/ $24,20,26$. To each block x_{1}, x_{2}, x_{3} the number $x=x_{1} \cdot 27^{2}+x_{2} \cdot 27+x_{3}$ is assigned, which is encrypted by the RSA-protocol to $v \equiv x^{e} \bmod n$. The number v will be then described as $v=\tilde{v}_{1} \cdot 27^{3}+\tilde{v}_{2} \cdot 27^{2}+\tilde{v}_{3} \cdot 27+\tilde{v}_{4}$, thus being coded back into the alphabet Σ as a block of four. (a) Let $e=1291$. Encrypt the plain text message „NACHRICHT". (b) By adding two new symbols, Σ is expanded to Σ^{\prime}, say with the two new symbols "," and ".". By writing $v=v_{1} \cdot 29^{2}+v_{2} \cdot 29+v_{3}, 0 \leq v_{i}<29, i=1,2,3$, the encrypted text can be represented in the alphabet Σ^{\prime} by blocks of three. Justify that the plain text can be decrypted uniquely from the encrypted text, using this method. (c) Why is the alphabet-expansion by a single new symbol in (b) not sufficient? (d) Encrypt again the plain text „NACHRICHT" with $e=1291$ and the expanded secret-text-alphabet Σ^{\prime} from (b).

Exercise 2: Rules for the discrete logarithm
Consider $\left(\mathbb{Z}_{m}^{\times}, \cdot, 1\right)$ and let m be such That $\mathbb{Z}_{m}^{\times}=\langle g\rangle$ with $g \in \mathbb{Z}_{m}^{\times}$. The discrete logarithm is defined by the map

$$
\log _{g}:\left\{\begin{array}{l}
\mathbb{Z}_{m}^{\times} \rightarrow \mathbb{Z}_{\varphi(m)} \\
g^{k} \bmod m \mapsto k \bmod \varphi(m)
\end{array}\right.
$$

Show the following assertions: (a) $\log _{g}$ is well-defined. (b) $\log _{g}$ satisfies the functional equation $\log _{g}(x y)=\log _{g}(x)+\log _{g}(y)$ for all $x, y \in \mathbb{Z}_{m}^{\times}$. (c) $\log _{g}$ is bijective. (d) Let m be chosen in such a way, that g, h are primitive roots $\bmod m$. Show $\log _{h}(x)=\log _{g}(x) \cdot \log _{h}(g)$ for all $x \in \mathbb{Z}_{m}^{\times}$.
Determine a generator g of \mathbb{Z}_{23}^{\times}and compute $\log _{g}(13)$.
Exercise 3: Modular square root computation
(a) Let $p \equiv 5$ (8) be prime and $a \in \mathbb{Z}$. Show that $X^{2} \equiv a \bmod p$ has a pair of solution $\pm x$ with $x=2^{m} a^{n}$ for appropriate $m, n \in \mathbb{N}_{0}$.
Use this concreteley to compute the solution pair of $X^{2} \equiv 13 \bmod 653$.
(b) Compute with method 6.10 of the lecture the roots of $x^{2} \equiv 61 \bmod 73$.

