Hand in: until monday 27.11.2023, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/
Exercise 1: Introspective numbers in the AKS-test
If p is prime, we call $m \in \mathbb{N} \underline{\text { introspective for }} f \in \mathbb{Z}_{p}[X] \underline{\text { and }} r \in \mathbb{N}$, if

$$
f(X)^{m} \equiv f\left(X^{m}\right) \bmod \left(X^{r}-1, p\right)
$$

Let p be prime and $r \in \mathbb{N}$ be given, show the following assertions:
(a) For any $a \in \mathbb{Z}_{p}$, the number p is introspective for $f(X)=X+a \in \mathbb{Z}_{p}[X]$ and r.
(b) If $k, m \in \mathbb{N}$ are introspective for $f \in \mathbb{Z}_{p}[X]$ and r, then also $k m$.
(c) If m is introspective for $f, g \in \mathbb{Z}_{p}[X]$ and r, then m is also introspective for $f g$ and r.

Exercise 2: DL-problem with known power residues in factor base 2,3,5
Let p be the given prime $p=2^{13}-1$ with primitive root $g=17$. We seek for ℓ with $g^{\ell} \equiv 5(p)$. For this, the following power residues are known: $g^{3513} \equiv 2^{3} \cdot 3 \cdot 5^{2}(p), g^{993} \equiv 2^{4} \cdot 3 \cdot 5^{2}(p)$, $g^{1311} \equiv 2^{2} \cdot 3 \cdot 5(p)$. Solve this DL-problem by linear algebra: determine integers a, b, c such that $g^{3513 a+993 b+1311 c} \equiv 5(p)$ holds.

Exercise 3: DL-problem with known power residue collision
Let G be a group with generator g of order n. For $x \in G$ we seek for r with $g^{r}=x$ (DL). Suppose one could discover a pair $a, b \in \mathbb{Z}$ with $g^{b}=x^{a}$. Show that $r=(b u+k n) / d \bmod n$ is the discrete logarithm in question for some $k \in[0, d-1] \cap \mathbb{Z}$, where $d=(a, n)$ and u is Bézout's element in $u a+v n=d$.

