Kryptography	Sheet 7	hhu Düsseldorf
Winter term 23/24		

Hand in: until monday 04.12.2023, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/
Exercise 1: On the Miller-Rabin-Condition
(a) Compute all square roots of 1 and $-1 \bmod n=2 \cdot 13 \cdot 17=442$.
(b) Let $n=257$ and $a=17$. Then we have $\varphi(n)=256=2^{8}=: 2^{s} \cdot d$ with $2 \nmid d$, i.e. $s=8$ and $d=1$. Compute the smallest $k \in \mathbb{N}$ with $\left(a^{d}\right)^{2^{k}} \equiv-1 \bmod n$. Why is there no such k, if $n=221=13 \cdot 17$?

Exercise 2: Probability for choosing integers mod n of certain order
Let $n=p_{1} \ldots p_{k}$ with pairwise different prime faktors $p_{1}, \ldots, p_{k}>2$ and $2^{s_{i}} \| p_{i}-1$ with $s_{1} \leq s_{2} \leq \cdots \leq s_{k}$. Let P_{n} be the probability that an arbitrarily chosen $y \in \mathbb{Z}_{n}^{\times}$has even order r, for which $y^{r / 2} \not \equiv-1 \bmod n$ holds. Show that

$$
P_{n}=1-2^{-\left(s_{1}+\cdots+s_{k}\right)}\left(1+\frac{2^{s_{1} k}-1}{2^{k}-1}\right)
$$

holds, and that this expression is $\geq 1-2^{1-k}$.

Exercise 3: Computations in the AES-field
Let be given the AES-field $F=\mathbb{F}_{2^{8}}:=\mathbb{Z}_{2}[X] /(f)$ with the irreducible polynomial $f(X):=$ $X^{8}+X^{4}+X^{3}+X+1$. If α denotes the residue class of X in F, we write the elements of F in the shape

$$
\begin{equation*}
b_{7} \alpha^{7}+b_{6} \alpha^{6}+\cdots+b_{1} \alpha+b_{0} \tag{}
\end{equation*}
$$

with $b_{i} \in \mathbb{Z}_{2}=\{0,1\}$. While calculating with these elements, α^{8} can always be reduced by $\alpha^{8}=\alpha^{4}+\alpha^{3}+\alpha+1$. The coefficients are then abbreviated as Byte $b_{7} b_{6} \ldots b_{1} b_{0}$ and interpreted as binary numbers to base 2. For the conversion in the hexadecimal system (base 16), they are represented by two hexadecimal ciphers $(0,1,2, \ldots, 9, A, B, C, D, E, F)$, e.g. $1=01, \alpha=02$, $\alpha+1=03, \alpha^{2}=04$ etc.
(a) Give the representation of $05, \ldots, 10$ in the shape $\left({ }^{*}\right)$.
(b) Compute $10.09, \alpha^{16}, \alpha^{32}, 9 \mathrm{~A} \cdot 0 \mathrm{C}$ as hexadecimal number.

