Hand in: until monday 11.12.2023, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/

Exercise 1: Irreducible polynomials over finite fields

- (a) Determine all irreducible polynomials of degree 2, 3 and 4 over \mathbb{F}_2 und \mathbb{F}_3 .
- (b) Determine all irreducible polynomials of degree d over \mathbb{F}_2 , which ones have at most three coefficients that are $\neq 0$?

Exercise 2: Calculations with polynomials over finite fields, especially the AES-field

- (a) Calculate the greatest common divisor of the two polynomials $X^4 + X^2 + 1$ and $X^2 + X + 1$ in the polynomial ring $\mathbb{F}_2[X]$ and $\mathbb{F}_4[X]$.
- (b) Calculate the multiplicative inverse of the element OC in the AES-field \mathbb{F}_{2^8} (cp. Exercise 3 of Sheet 7).
- (c) Why is the element $X + 1 \in R$ in the ring $R = \mathbb{F}_{2^8}[X]/(X^4 + 1)$ not invertible?
- (d) Why is the element $c = 03X^3 + X^2 + X + 02$ in the ring $R = \mathbb{F}_{2^8}[X]/(X^4 + 1)$ invertible?

Exercise 3: Elliptic curve over finite fields

Let p be prime. Consider the subset of \mathbb{F}_p^2 which is given by the following equation over the finite field \mathbb{F}_p ,

$$E: y^2 = x^3 + x + 9.$$

Calculate for $p \in \{2, 3, 5, 7, 19\}$ all points $(x, y) \in \mathbb{F}_p^2$ that lie in this subset.