Hand in: until monday 11.12.2023, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/
Exercise 1: Irreducible polynomials over finite fields
(a) Determine all irreducible polynomials of degree 2,3 and 4 over \mathbb{F}_{2} und \mathbb{F}_{3}.
(b) Determine all irreducible polynomials of degree d over \mathbb{F}_{2}, which ones have at most three coefficients that are $\neq 0$?

Exercise 2: Calculations with polynomials over finite fields, especially the AES-field
(a) Calculate the greatest common divisor of the two polynomials $X^{4}+X^{2}+1$ and $X^{2}+X+1$ in the polynomial ring $\mathbb{F}_{2}[X]$ and $\mathbb{F}_{4}[X]$.
(b) Calculate the multiplicative inverse of the element 0 C in the AES-field $\mathbb{F}_{2^{8}}$ (cp. Exercise 3 of Sheet 7).
(c) Why is the element $X+1 \in R$ in the ring $R=\mathbb{F}_{2^{8}}[X] /\left(X^{4}+1\right)$ not invertible?
(d) Why is the element $c=03 X^{3}+X^{2}+X+02$ in the ring $R=\mathbb{F}_{2^{8}}[X] /\left(X^{4}+1\right)$ invertible?

Exercise 3: Elliptic curve over finite fields
Let p be prime. Consider the subset of \mathbb{F}_{p}^{2} which is given by the following equation over the finite field \mathbb{F}_{p},

$$
E: y^{2}=x^{3}+x+9 .
$$

Calculate for $p \in\{2,3,5,7,19\}$ all points $(x, y) \in \mathbb{F}_{p}^{2}$ that lie in this subset.

