| Kryptography | Sheet 9 |
| :--- | :--- |
| hhu Düsseldorf |  |
| Winter term 23/24 |  |

## Hand in: until monday 18.12.2023, before the lecture starts

Website: http://reh.math.uni-duesseldorf.de/~khalupczok/krypto/
Exercise 1: Projective plane over a finite field
Let $k$ be a field with $p^{r}$ many elements.
Show in two different ways that there are $p^{2 r}+p^{r}+1$ many points in $\mathbb{P}^{2}(k)$.
Why are there just as many lines in $\mathbb{P}^{2}(k)$ ?
Exercise 2: Calculation of projective intersection points with multiplicities
Let $k$ be an arbitrary field.
(a) Calculate all points at infinity that lie on the parabolas $y=x^{2}$ and $y=-x^{2}+1$.
(b) How many projective intersection points are there (counted with multiplicities)?
(c) How could be formulated a generalization of (b) for curves $f_{1}(x, y)=0$ and $f_{2}(x, y)=0$, where $f_{1}, f_{2} \in \mathbb{C}[x, y]$ with $f_{1} \neq f_{2}$ ? Think also of the case of two lines.

Exercise 3: Singular points on a projective curve
(a) Let $k$ be a field of characteristic 0 and $F(X, Y, Z) \in k[X, Y, Z] \backslash k$ be homogeneous of degree $d$. Show that $F$ solves Euler's Differential Equation

$$
X \frac{\partial F}{\partial X}+Y \frac{\partial F}{\partial Y}+Z \frac{\partial F}{\partial Z}=d F
$$

(b) Bernoulli's Lemniscate is the curve $\mathcal{C}_{f}$ with $f(x, y)=\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)$. Determine all singular points on $\mathcal{C}_{F_{f}} \subseteq \mathbb{P}^{2}(\mathbb{C})$. Which points lie on the line of infinity?

Exercise 4: A model of Boy's surface
Visit the link
www.savoir-sans-frontieres.com/JPP/telechargeables/Deutch/DAS\ _TOPOLOGIKON.pdf where you find on p. 48 of the pdf-file an instruction for assembling Boy's surface which represents $\mathbb{P}^{2}(\mathbb{R})$ in $\mathbb{R}^{3}$. Fold this surface and bring your model to the exercise group.

