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Abstract. These notes were prepared for a series of lectures, given as part
of an LMS-EPSRC Short Course on “Asymptotic Methods in Infinite Group
Theory”. The course was held at the University of Oxford in September 2007.

The notes were specifically written for the course in Oxford and there is likely
to be room for corrections and improvements. Any form of feedback is welcome.
Please send comments to the email address provided at the end of the notes.

1. Introduction: classifying finite p-groups

One of the great mathematical achievements of the last century is the classi-
fication of finite simple groups. Roughly speaking, the non-abelian finite simple
groups comprise 26 sporadic groups and two infinite families, namely the alter-
nating groups and the groups of Lie type. In particular, finite simple groups are
highly structured and quite rare in occurrence. A rather weak quantification of
‘rare’ is the following: there are at most two non-isomorphic simple groups of any
prescribed order.

At the opposite end of the vast spectrum of all finite groups lie the groups of
prime-power order, finite p-groups for short. Here and throughout the letter p
denotes a prime. Generally speaking, finite p-groups admit many normal sub-
groups. As all the composition factors of a finite p-group are cyclic of order p, the
knowledge of them reveals nothing beyond the order of the particular group.

Indeed, there is a lot of flexibility in building finite p-groups from cyclic com-
ponents by stepwise extension. In the 1960s Higman and Sims showed that the
number of groups of order pk is roughly of the size p2k3/27 as k → ∞. Higman’s
famous PORC conjecture, which was formulated at the same time, concerns the
precise numbers of groups of order pk and remains a challenge to this day.

In 1993 Pyber used the classification of finite simple groups to prove that the
number of groups of order at most n is roughly of the size n2(log2 n)2/27 as n→∞.
In other words, 2-groups taken by themselves set the general pace as far as the
asymptotic growth in the number of groups is concerned. As a consequence,
classifying 2-groups seems to be about as ambitious as classifying finite groups
without any restrictions at all – surely an impossible task!

Fortunately the story does not end there. In 1980 Leedham-Green and Newman
formulated a series of conjectures, the so-called Coclass Conjectures, which con-
stitute no less than a programme for the classification of all groups of prime-power
order. The underlying idea is that, instead of staring at individual finite p-groups,
one should suitably streamline them into infinite pro-p groups. A pro-p group
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is a topological group which can be formed by taking an inverse limit of finite
p-groups. In this way one can capture a whole family of finite p-groups in one sin-
gle object and thus treat infinitely many groups of variable sizes simultaneously.
The primary invariant for the classification which Leedham-Green and Newman
proposed is the coclass of a finite p-group, which measures the difference between
the order of the group and its nilpotency class. It fits well with the process of
forming pro-p groups.

In fact, the Coclass Conjectures were all proved over a period of about ten years.
This success story and similar advances in asymptotic group theory over the last
twenty years both made use of and contributed to our general understanding of
p-adic analytic pro-p groups. The aim of these notes is to introduce the reader to
some of the concepts and techniques in the theory of compact p-adic Lie groups,
with a view towards applications in general group theory. Concrete examples of
such applications are discussed in the two accompanying lecture series “Strong
approximation methods in infinite group theory” and “Zeta functions associated
to infinite groups”.

General references. The following books cover some of the selected material in
greater detail. They also address related and more advanced topics.

◦ J.D. Dixon, M.P.F. du Sautoy, A. Mann, D. Segal, Analytic Pro-p Groups,
Cambridge University Press, 1999.
◦ E.I. Khukhro, p-Automorphisms of Finite p-Groups, Cambridge University

Press, 1998.
◦ G. Klaas, C.R. Leedham-Green, W. Plesken, Linear Pro-p-Groups of Finite

Width, Springer Verlag, 1997.
◦ C.R. Leedham-Green and S. McKay, The Structure of Groups of Prime

Power Order, Oxford University Press, 2002.
◦ J.S. Wilson, Profinite Groups, Oxford University Press, 1998.

The original source for much of the theory of p-adic analytic groups is Lazard’s
seminal paper Groupes analytiques p-adiques, Inst. Hautes Études Scientifiques,
Publ. Math. (26), 389–603 (1965).
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2. First Lecture

2.1. Nilpotent groups. Let G be a group and let x, y ∈ G. The conjugate of x
by y is xy = y−1xy. Conjugation provides a natural action of G on itself, indeed it
induces a homomorphism from G into its automorphism group Aut(G). The kernel
of this homomorphism, which constitutes a normal subgroup of G, is called the
centre of G and denoted by Z(G). The upper central series of G is the ascending
series of normal subgroups

1 = Z0(G) ≤ Z1(G) ≤ . . . , where Zi+1(G)/ Zi(G) = Z(G/ Zi(G)).

By and large we will be interested in filtrations of a group G which start at the
top, such as the lower central series which we describe next. The commutator of x
with y is [x, y] = x−1xy = x−1y−1xy. The subgroup generated by all commutators
is called the commutator subgroup of G and denoted by [G, G]. This notation is
easily adapted to a more general situation: if H, K ≤ G, then we write [H, K]
to denote the subgroup of G which is generated by all commutators [h, k] with
h ∈ H and k ∈ K. The group [G, G] can be characterised as the smallest normal
subgroup of G such that the corresponding quotient is abelian. The lower central
series of G is the descending series of normal subgroups

G = γ1(G) ≥ γ2(G) ≥ . . . , where γi+1(G) = [γi(G), G].

A basic property of this sequence is that [γi(G), γj(G)] ⊆ γi+j(G) for all i, j ∈ N.
The group G is said to be nilpotent if its lower central series terminates in the

trivial group 1 after finitely many steps; in this case the nilpotency class of G is
the smallest non-negative integer c such that γc+1(G) = 1.1

Nilpotent groups can be thought of as close relatives of abelian groups. Never-
theless already the study of finite nilpotent groups can become exceedingly difficult
from a purely group theoretic point of view. In fact, a finite group is nilpotent
if and only if for each prime p it has a unique Sylow p-subgroup. Equivalently, a
finite group is nilpotent if and only if it decomposes as a direct product of finite
p-groups. Whereas finite abelian groups are completely classified, the theory of
finite p-groups remains an active area of research with many open problems.

2.2. Finite p-groups. A p-group is a torsion group in which every element has
p-power order. Accordingly, finite p-groups are precisely the groups of p-power
order. We implicitly stated above that every finite p-group is nilpotent. This
fact can easily be proved inductively from the following fundamental observation.
Every non-trivial normal subgroup N of a finite p-group G intersects Z(G) non-
trivially. In particular, the centre of a non-trivial finite p-group is non-trivial. This
observation can be proved by analysing the possible orbit sizes in the action of G
on N by conjugation; see Exercise 4.1. An interesting consequence is that every
proper subgroup of a finite p-group G is properly contained in its normaliser.

It is easy to see that the maximal subgroups of a finite p-group G are precisely
the subgroups of index p and hence normal in G. The intersection of all maximal
subgroups of G is the Frattini subgroup, commonly denoted by Φ(G). The factor

1It can be shown that for any group G and for any natural number c the lower central series
of G terminates in 1 after c steps if and only if the upper central series of G terminates in G
after c steps.
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group G/Φ(G) constitutes the largest elementary abelian quotient of the finite
p-group G. In other words the Frattini subgroup can be described as Φ(G) =
Gp[G, G], where Gp denotes the subgroup generated by all pth powers in G.

The Frattini subgroup of a finite p-group G plays a useful role in the context
of generating sets. Let X ⊆ G. Then X generates G if and only if there is no
maximal subgroup of G containing X. This shows that X generates G if and
only if its image modulo Φ(G) constitutes a generating set of G/Φ(G). Being an
elementary p-group, G/Φ(G) can be regarded as a finite dimensional vector space
V over the finite prime field Fp. The set X is a minimal generating set of G if and
only if its image in V forms a basis for V . Thus all minimal generating sets of G
have the same size, namely dimFp V .

2.3. Lie rings. Lie methods constitute an important tool in the study of groups.
In particular this applies to p-groups and, more generally, pro-p groups. The basic
idea is to capture a large part of the group structure in a Lie ring.

We recall that a Lie ring is a Z-module L together with a bi-additive operation
[·, ·] : L× L→ L which is skew-symmetric and satisfies the Jacobi identity:

[x, x] = 0 and [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L.

Let R be a commutative ring, the most common case being that R is a field. If L
has the additional structure of an R-module and if [·, ·] is bilinear with respect to
scalar multiplication by elements of R, then L is called a Lie algebra over R. If R
is a principal ideal domain and L is a free R-module of finite rank, one also uses
the term Lie lattice. Standard examples of Lie algebras include matrix algebras.
Let d ∈ N. Then the set gld(R) of d×d matrices over R, regarded as an R-module
and endowed with the commutator bracket

[A, B] := AB −BA for all A, B ∈ gld(R),

forms a Lie algebra over R. In fact, a theorem of Ado states that every finite
dimensional Lie algebra over a field K of characteristic 0 is isomorphic to a Lie
subalgebra of gld(K) for a suitable degree d.

At first sight Lie rings perhaps appear to be more complicated objects than
groups. However, one should think of a Lie ring essentially as a vector space. The
extra structure, given by the Lie bracket, can be regarded as a simplified version
of the group commutator. For instance, the group theoretic analogue of the Jacobi
identity is the baffling Hall-Witt identity

[[x, y−1], z]y [[y, z−1], x]z [[z, x−1], y]x = 1

which holds in any group. Many of the concepts which we have introduced for
groups, such as nilpotency, can be defined mutatis mutandis in the context of Lie
rings. For instance, the centre of a Lie ring L is the Lie ideal Z(L) = {x ∈ L | ∀y ∈
L : [x, y] = 0}. We trust that the reader will make the appropriate translations of
this kind where necessary.

2.4. Applying Lie methods to groups. Next we describe a comparatively sim-
ple recipe for associating a Lie ring to a group G with respect to its lower cen-
tral series. The procedure is particularly useful if G is residually nilpotent, i.e.
if

⋂
i∈N γi(G) = 1. Form the direct sum L =

⊕∞
i=1 Li of the abelian groups
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Li := γi(G)/γi+1(G). Then commutation in G induces a natural binary oper-
ation [·, ·]Lie on L: it is defined on homogeneous elements xγi+1(G) ∈ Li and
yγj+1(G) ∈ Lj by

[xγi+1(G), yγj+1(G)]Lie := [x, y]γi+j+1(G) ∈ Li+j,

and can be uniquely extended to yield a bi-additive operation on all elements. As
[y, x] = [x, y]−1 for all x, y ∈ G, this binary operation on L is skew-symmetric.
Moreover, the Hall-Witt identity can be used to show that [·, ·]Lie satisfies the
Jacobi identity. Thus L =

⊕∞
i=1 Li obtains the structure of a Lie ring. This

Lie ring is graded in the sense that [Li, Lj] ⊆ Li+j for all indices i, j. If all the
homogeneous components Li happen to have exponent p, we can regard L even as
a Lie algebra over Fp. An example of this construction is described in Exercise 4.3.

A more sophisticated way of constructing a Lie ring from a group is based on
the so-called Hausdorff Formula which can be regarded as the centre piece of Lie
theory.2 Stated briefly, the Hausdorff Formula gives an expression for the formal
power series

Φ(X, Y ) = log(exp(X) · exp(Y )) ∈ Q〈〈X, Y 〉〉
in non-commuting indeterminates X, Y . Here

log(1 + X) =
∑∞

n=1
(−1)n−1Xn/n and exp(X) =

∑∞

n=0
Xn/n!

denote the usual formal power series. The Hausdorff Formula enables one to trans-
late between a Lie ring and a group via the logarithm and exponential functions.
Classical and important instances of this procedure are the correspondences of
Mal’cev and Lazard. These can be employed, in particular, to study finitely gen-
erated torsion-free nilpotent groups and finite p-groups of nilpotency class less
than p. Without specifying further details at this point we formulate

Theorem 2.1 (Lazard’s correspondence). The Hausdorff Formula and its inverse
set up a correspondence between

◦ finite p-groups of nilpotency class less than p and
◦ nilpotent Lie rings of class less than p whose additive group is a finite p-group.

The correspondence preserves such invariants as the orders and the nilpotency
classes of the objects involved.

We give a simple illustration of Lazard’s correspondence by describing the iso-
morphism classes of groups of order p3 for odd primes p. Writing Cn to denote
a cyclic group of order n, there are (up to isomorphism) precisely three abelian
groups of order p3, namely

G1 = Cp × Cp × Cp, G2 = Cp2 × Cp, G3 = Cp3 .

We claim that in addition to these there are (up to isomorphism) precisely two
non-abelian groups of order p3. Since the nilpotency class of a group of order p3

is at most 2, by Lazard’s correspondence it suffices to show that there are (up to
isomorphism) precisely two nilpotent Lie rings of class 2 and order p3. Clearly,
the underlying additive group of such a Lie ring L cannot be cyclic. Moreover,
the commutator Lie subring [L, L] has to coincide with the centre Z(L). From

2Often the Hausdorff Formula is more decoratively referred to as the Baker-Campbell-
Hausdorff Formula.
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this one shows that each of the two non-cyclic abelian groups of order p3 supports
essentially one nilpotent Lie ring structure. The two resulting Lie rings and their
corresponding groups can be realised in terms of matrices over Fp and Z/p2Z,
respectively; see Exercise 4.2. Representatives for the two isomorphism classes of
non-abelian groups of order p3 are also given by the following group presentations,

G4 = 〈x, y, z | xp = yp = zp = 1, z = [x, y], [z, x] = [z, y] = 1〉,

G5 = 〈x, y | xp2

= yp = 1, [x, y] = xp〉.

In ‘real life’, Lazard’s correspondence forms the starting point for the rather more
sophisticated enumeration of finite p-groups of higher order, p7 say.3

Note that the graded Lie rings associated to G4 and G5 with respect to their
lower central series coincide. This illustrates that the first and simpler method
which we presented above incurs a loss of information. The Lie rings which can be
associated via the Hausdorff Formula to suitable pro-p groups are Lie lattices over
the p-adic integers. It turns out that they do in fact determine the pro-p groups
completely.

2.5. Absolute values. The traditional way to describe the size of a rational
number is through the use of absolute values. An absolute value on a field K is a
real-valued function |·| : K → [0,∞) which is non-degenerate, multiplicative and
satisfies the triangle inequality; this means that for all x, y ∈ K we have

(1) |x| = 0 if and only if x = 0,
(2) |xy| = |x| · |y|,
(3) |x + y| ≤ |x|+ |y|.

The absolute value is trivial if |x| = 1 for all x 6= 0. For our purposes, the absolute
value is said to be either non-archimedean or archimedean according to whether
or not it satisfies the ultrametric triangle inequality

(3′) |x + y| ≤ max{|x|, |y|}.
The ordinary absolute value on R, which is given by |x|∞ = max{x,−x}, restricts
to an archimedean absolute value on Q.

In addition there is an infinite family of non-archimedean absolute values on Q,
one for each prime p. Each rational number x 6= 0 can be written uniquely in the
form

x = pn · a
b

where n, a, b ∈ Z with b > 0, gcd(a, b) = 1, p - ab.

We put

vp(x) := n and |x|p := p−n.

Setting vp(0) := ∞ and |0|p := 0, we obtain the p-adic absolute value |·|p on Q.
Intuitively, x is p-adically small if it is divisible by a large power of p. The map

3In 2005 O’Brien and Vaughan-Lee showed that for p > 5 the number of groups of order p7 is
precisely 3p5 + 12p4 + 44p3 + 170p2 + 707p + 2455 + (4p2 + 44p + 291) gcd(p− 1, 3) + (p2 + 19p +
135) gcd(p− 1, 4) + (3p + 31) gcd(p− 1, 5) + 4 gcd(p− 1, 7) + 5 gcd(p− 1, 8) + gcd(p− 1, 9), if I
copied everything correctly. In particular, this substantiates for k = 7 Higman’s famous PORC
conjecture which states that the precise number of groups of order pk is given by a polynomial
in p, depending on k and the residue class of p with respect to a suitable modulus n(k). PORC
stands for ‘polynomial on residue classes’.
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vp : Q → Z ∪ {∞}, which captures the same information, is called the p-adic
valuation on Q.

A theorem of Ostrowski states that, up to a suitable equivalence relation, the
ordinary absolute value and the p-adic absolute values exhaust all possible non-
trivial absolute values on Q. They are linked by the curious adelic formula

|x|∞
∏

p

|x|p = 1 for all x ∈ Q,

which is intimately linked with the Fundamental Theorem of Arithmetic; see Ex-
ercise 4.4.

2.6. p-adic numbers. The field R of real numbers can be regarded as the com-
pletion of Q with respect to the metric d∞(x, y) = |x−y|∞ induced by the ordinary
archimedean absolute value. Formally, one could construct R by adjoining all the
missing limits of Cauchy sequences in Q with respect to d∞. Every element α ∈ R
is the limit of a Cauchy sequence α = limn→∞ xn with xn ∈ Q, and the absolute
value extends to R via |α|∞ = limn→∞|xn|∞. By a similar procedure, the ring op-
erations, addition and multiplication, extend from Q to R, and one obtains again
a field with absolute value. In using the common decimal notation we tend to
think of a real number α as the limit of a particular Cauchy sequence of the form

α = lim
n→∞

xn, xn = bαc+
n∑

k=1

ak · 10−k,

where bαc denotes the integral part of α and the ‘digits’ ak are taken from the
set {0, 1, . . . , 9}. We remark that base 10 is chosen by convention, not for any
intrinsic mathematical reason.

Similarly we can form for each prime p the completion Qp of Q with respect
to the metric dp(x, y) = |x − y|p induced by the p-adic absolute value. In this
case one has to adjoin all the missing limits of (equivalence classes of) Cauchy
sequences with respect to dp. Every element α ∈ Qp is the limit of a Cauchy
sequence α = limn→∞ xn with xn ∈ Q, and the absolute value is extended to Qp

by setting |α|p = limn→∞|xn|p. Similarly one extends to Qp the valuation map
vp and the ring operations, addition and multiplication. One then checks that
Qp is again a field with absolute value |·|p. The elements of Qp are called p-adic
numbers.

A convenient notation for explicit computations with p-adic numbers is the
following. Every α ∈ Qp can be written uniquely as a series

α =
∑
k∈Z

akp
k =

∞∑
k=vp(α)

akp
k,

where the coefficients ak are taken from the set Rp := {0, 1, . . . , p− 1}, ak = 0 for
k < vp(α), and avp(α) 6= 0 if α 6= 0. We remark that instead of Rp we could use
any set of representatives for Z modulo pZ.

A central feature of the real numbers R is that the field operations are con-
tinuous with respect to (the topology underlying) the metric associated to the
absolute value |·|∞. Section 3 contains a summary of basic notions in topology
which we assume. As a topological space R is Hausdorff, locally-compact and
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connected. Approximate computations in R can be performed by truncating the
decimal representations of the numbers involved and verifying that errors do not
pile up too much – the last bit can actually be quite tricky.

In a similar way the p-adic absolute value induces a metric and hence a topology
on Qp. It is an inherent feature of the completion process that the field opera-
tions are continuous. As a topological space Qp is Hausdorff, locally-compact and
totally-disconnected. In fact, if we regard Rp as a finite discrete space and endow∏

k∈Z Rp with the product topology, then the coordinate map

Qp →
∏
k∈Z

Rp, α =
∑
k∈Z

akp
k =

∞∑
k=vp(α)

akp
k 7→ (ak)

is a homeomorphism from Qp onto the open subspace{
(ak)k∈Z ∈

∏
k∈Z

Rp | ∃n ∀k < n : ak = 0
}

.

Approximate computations in Qp can be performed by truncating the standard
representations of the numbers involved; the ultrametric triangle inequality guar-
antees that errors will not accumulate; see Exercise 4.4.

A local field is a field K, equipped with a non-trivial non-archimedean absolute
value, such that K is locally-compact with respect to the induced topology. If K
is a finite extension of Qp, then the p-adic absolute value |·|p extends uniquely to
an absolute value on K, and K becomes a local field. Conversely, it can be shown
that every local field of characteristic 0 arises in this manner.

2.7. p-adic integers. Finally we describe a most notable difference between the
archimedean field R and its counterparts, the non-archimedean p-adic fields Qp.
The ultrametric triangle inequality implies that the open compact set

Zp := {α ∈ Qp | |α|p ≤ 1} =
{∑∞

k=0
akp

k | ak ∈ Rp

}
forms a subring of Qp. It is the topological closure of the ordinary integers Z in
Qp, and its elements are called p-adic integers.

The structure of the ring of p-adic integers is quite simple. A short computation
reveals that its group of units is given by

Z∗
p = {α ∈ Qp | |α|p = 1} =

{∑∞

k=0
akp

k | ak ∈ Rp and a0 6= 0
}

.

Moreover, the ideals of Zp are principal and of the form pnZp: they line up neatly
in a descending chain

Zp ⊃ pZp ⊃ p2Zp ⊃ . . . ⊃ 0.

The proper quotient rings of Zp are the familiar finite rings Zp/p
nZp
∼= Z/pnZ. In

Section 5 we describe how Zp can be regarded as an inverse limit of these finite
quotients. Intuitively, one should think of performing ring operations in Zp as
follows: do the operations in the ring Zp/p

nZp, then let n tend to infinity.



ANALYTIC PRO-p GROUPS 9

2.8. Preview: p-adic analytic pro-p groups. As yet we have not even defined
what we mean by a pro-p group. Nevertheless, skipping the theory that lies in
between, we can already formulate a precise and hands-on description of the family
of compact p-adic analytic groups and p-adic analytic pro-p groups, in particular.

A topological group is a group G which is also a topological space such that the
group operations are continuous, i.e. such that the map G×G→ G, (g, h) 7→ g−1h
is continuous. Let d ∈ N, and consider the group GLd(Zp) of all invertible d ×
d matrices over the ring Zp of p-adic integers. The set Matd(Zp) of all d×d matrices
carries a natural p-adic topology, namely the product topology induced from the
p-adic topology on Zp. Matrix multiplication is easily seen to be continuous, and
so is the process of forming the inverse of an invertible matrix. Hence GLd(Zp),
equipped with the subspace topology, becomes a topological group. We can now
state

Theorem 2.2 (Lazard’s characterisation of compact p-adic Lie groups). A com-
pact topological group admits a p-adic analytic structure if and only if it is iso-
morphic to a closed subgroup of GLd(Zp) for a suitable degree d.

In fact, Lazard established a whole theory of p-adic analytic groups with much
wider consequences. One of his key results is that the analytic structure of a p-adic
analytic group is determined entirely by its topological group structure. This can
be regarded as a positive solution to Hilbert’s fifth problem for p-adic Lie groups.

As we will see, GLd(Zp) is virtually a pro-p group. This means that GLd(Zp)
contains a subgroup of finite index which is a pro-p group. Theorem 2.2 implies
that every compact p-adic analytic group is virtually a pro-p group.

We conclude this section with a concrete reformulation of Theorem 2.2 which
applies more directly to pro-p groups. There is a natural ring homomorphism from
Zp onto the finite prime field Fp. As Z∗

p = Zp \pZp, this induces a surjective group
homomorphism η : GLd(Zp) → GLd(Fp). The kernel of η is the first congruence
subgroup GL1

d(Zp) = {g ∈ GLd(Zp) | g ≡ 1 (mod p)} of GLd(Zp). The preimage
under η of any Sylow p-subgroup of the finite group GLd(Fp) constitutes a Sylow
pro-p subgroup of GLd(Zp). One particular Sylow p-subgroup of GLd(Fp) is the
group of upper uni-triangular matrices; according to the Sylow Theorems all other
Sylow p-subgroups of GLd(Fp) are conjugate to this one.

Corollary 2.3. A p-adic analytic pro-p group is a topological group which is iso-
morphic to a closed subgroup of a Sylow pro-p subgroup of GLd(Zp) for a suitable
degree d.
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3. Basic notions and facts from point-set topology

Pro-p groups and, more generally, profinite groups form a particular class of
topological groups. For discussing their structure we require basic notions and
facts from point-set topology. For the convenience of the reader I have listed the
relevant prerequisites below.

A topological space X = (X, τ) is a set X together with a topology, given by a
collection τ of open subsets of X, satisfying: (i) X and ∅ are open; (ii) the union
of any family of open sets is open; (iii) the intersection of any two open sets is
open. The complement in X of any open set is called a closed set. It is convenient
to use the notation A ⊆o X (respectively A ⊆c X) to indicate that a subset A is
open (respectively closed) in X. Every metric space (X, d) with distance function
d has an underlying topology: the open sets in this topology are the unions of
‘open’ balls {y | d(x, y) < r}, where x ∈ X and r ∈ R. The discrete topology on
a set X is the topology in which every subset of X is open.

Let ϕ : X → Y be a map between topological spaces. The map ϕ is continuous
if the preimage of any open set is open, i.e. if Bϕ−1 ⊆o X for all B ⊆o Y . The
map ϕ : X → Y is a homeomorphism if it is continuous, bijective and admits a
continuous inverse.

Let X be a topological space. The subspace topology on a subset Y ⊆ X is
defined by declaring all intersections Y ∩ A with A ⊆o X to be open. This is
the smallest topology which renders the natural inclusion Y → X continuous.
The quotient topology on Y := X/∼ with respect to an equivalence relation ∼ is
defined by declaring a subset B ⊆ Y open if its preimage in X under the natural
projection is open. This is the smallest topology which renders the projection
X → Y continuous.

If Xi, i ∈ I, is a family of topological spaces, then the product topology on the
Cartesian product X :=

∏
i∈I Xi is defined by declaring a subset of X open if it

is the union of basic open sets of the form
∏

i∈I Ui, where Ui = Xi for almost all
i ∈ I and Ui ⊆o Xi for all i ∈ I. It is the smallest topology such that all canonical
projections X → Xi, i ∈ I, are continuous.

Let X be a topological space. The closure cl(A) of a subset A ⊆ X is the
intersection of all closed sets containing A; it constitutes the smallest closed set
containing A. A subset A ⊆ X is dense in X if its closure is equal to X. If
x ∈ A ⊆o X, then A is called an open neighbourhood of x. The space X is
Hausdorff if any two distinct points have disjoint open neighbourhoods. The
space X is compact if any covering X =

⋃
{Ui | i ∈ I} of X by open subsets

Ui ⊆o X admits a finite subcovering X =
⋃
{Ui | i ∈ J}, J ⊆ I with |J | < ∞.4

Equivalently, X is compact if for any non-empty family Ci, i ∈ I, of closed subsets
of X having the finite intersection property⋂

{Ci | i ∈ J} 6= ∅ for all J ⊆ I with 1 ≤ |J | <∞

one has
⋂
{Ci | i ∈ I} 6= ∅. The continuous image of a compact space is compact.

A theorem of Tychonoff states that the product of any family of compact spaces
is compact.

4The original notion ‘kompakt’ due to Hausdorff – and also adopted by Bourbaki – is reserved
for spaces which are compact, in the given sense, and Hausdorff.
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The space X is locally-compact if every point x ∈ X has a local base of compact
neighbourhoods, i.e. if for every open neighbourhood U of x there exist V ⊆o X
and a compact subset C ⊆ X such that x ∈ V ⊆ C ⊆ U . Every compact
Hausdorff space is locally-compact; see Exercise 4.5.

The space X is connected if it cannot be partitioned into two proper open
subsets, i.e. if for all A ⊆o X with X \ A ⊆o X one has A = ∅ or A = X.
Equivalently, X is connected if every continuous map from X into the discrete
space {0, 1} is constant. The continuous image of a connected space is connected.
The maximal connected subsets of X are called connected components of X. The
connected components of X are closed and they partition X. The space X is
totally-disconnected if all its connected components are one-point sets. A path
from x to y in the space X is a continuous map ϕ from the unit interval [0, 1] into
X with ϕ(0) = x and ϕ(1) = y. The space X is path-connected if any to points of
X can be joined by a path. Every path-connected space is connected.
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4. First set of exercises

This first set of exercises is also intended to serve as a bridge towards topics
which will be covered in later sections. The reader is not necessarily expected to
solve all parts of all exercises in the first go.

Exercise 4.1 (Finite p-groups).
(a) Let N be a non-trivial normal subgroup of a non-trivial finite p-group G. Show
that Z(G) ∩N 6= 1. Conclude that Z(G) 6= 1 and that G is nilpotent.
(b) Prove that the nilpotency class of a group of order pn is at most n− 1.
Construct a group of order pp and nilpotency class p− 1 along the following lines.
Let V be a p-dimensional vector space over Fp with basis e1, . . . , ep. Consider the
linear map α : V → V , given by eα

i = ei+1 for i ∈ {1, . . . , p − 1} and eα
p = e1.

Observe that the 1-dimensional subspace U of V which is spanned by e1 + . . .+ ep

is invariant under α. Consider the semidirect product of V/U by 〈α〉.
Remark: Groups of order pn and nilpotency class n− 1 are said to be of maximal
class. In fact, they are the ones of coclass 1. The semidirect product of V by 〈α〉
is isomorphic to the wreath product Cp o Cp.
(c) Let n ∈ N and write n = n0+n1p+. . .+nrp

r with 0 ≤ ni < p for i ∈ {0, . . . , r}.
Determine vp(n!), i.e. the exponent of the highest p-power dividing n!, in terms of
the numbers ni. (Hint: First describe vp(n!) in terms of the numbers bn/pic.)
The wreath product Cp o H of the cyclic group Cp with a finite group H is the
semidirect product of the group algebra Fp[H] by H, with H acting by right
multiplication. Let k ∈ N and observe that the iterated wreath product Wk :=
Cp o (Cp o . . . oCp) of k cyclic groups of order p acts naturally on the finite p-regular
rooted tree of length k, depicted below for p = 3 and k = 2.
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Figure 1. The wreath product C3 o C3
∼= C3 n (C3 × C3 × C3) acts

naturally on the rooted 3-regular tree of length 2. In this action the
root vertex is fixed, and the action is recorded faithfully on the bottom
layer of nine vertices. This describes an embedding of C3 o C3 into the
symmetric group Sym(9).

By computing the order of Wk, prove that the Sylow p-subgroup of the symmetric
group Sym(pk) is isomorphic to Wk. Conclude that every finite p-group of order
at most pk embeds into Wk.
Can you guess the structure of a Sylow p-subgroup of the symmetric group Sym(n)?
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Exercise 4.2 (Groups and Lie rings of order p3).
(a) Determine up to isomorphism all groups of order p, p2 and p3.
(b) Determine up to isomorphism all Lie rings of order p and p2. Can you find a
Lie ring L of order p3 which is perfect, i.e. which satisfies L = [L, L]?
(c) Show that the groups G4 and G5 of order p3, which are defined in Section 2.4
by presentations, are isomorphic to the subgroups

G̃4 =


1 a c

0 1 b
0 0 1

 | a, b, c ∈ Fp

 , G̃5 =

{(
1 + pa b

0 1

)
| a, b ∈ Z/p2Z

}
.

of GL3(Fp) and GL2(Z/p2Z), respectively.

Remark: The group G̃4 is the finite Heisenberg group over the field Fp.
(d) Show that the sets

L̃4 =


0 a c

0 0 b
0 0 0

 | a, b, c ∈ Fp

 , L̃5 =

{(
pa b
0 0

)
| a, b ∈ Z/p2Z

}
.

form nilpotent Lie subrings of class 2 in gl3(Fp) and gl2(Z/p2Z), respectively.

(e) Let i ∈ {4, 5}, and suppose that p > 2. Can you see how L̃i and G̃i are related
to one another via the truncated exponential function X 7→ 1 + X + X2/2 and
the truncated logarithm function 1 + X 7→ X −X2/2?

Set up a bijection ϕ : L̃i → G̃i based on the truncated exponential function and

work out a Lie expression in x, y ∈ L̃i for the element (xϕ · yϕ)ϕ−1
.

Remark: This will constitute a first approximation to the Hausdorff Formula.

Exercise 4.3 (The lower central series of the Nottingham group).
The Nottingham group over Fp is the group G of formal power series

a = t
(
1 +

∑∞

i=1
ait

i
)

= t + a1t
2 + a2t

3 + . . . ∈ t + t2Fp[[t]]

with composition given by substitution: the product of a,b ∈ G is defined as

a ◦ b := a(b(t)) = t + (a1 + b1)t
2 + (a2 + 2a1b1 + b2)t

3+

(a3 + 3a2b1 + a1b
2
1 + 2a1b2 + b3)t

4 + . . .

(a) Convince yourself that every element of G has an inverse with respect to the
prescribed composition.
(b) Consider the elements ei := t + ti+1 ∈ G, i ∈ N. Verify that eλ

i ≡ t + λti+1

modulo ti+2 for i ∈ N and λ ∈ Z. Prove that ei ◦ ej ≡ ej ◦ ei modulo ti+j+1 and

deduce that [ei, ej] ≡ ei−j
i+j modulo ti+j+2 for all i, j ∈ N.

(c) Show that for every n ∈ N the set Gn := {a ∈ G | a ≡ t mod tn+1} forms a
normal subgroup of index pn−1 in G. Show that Gn = 〈en〉Gn+1 for n ∈ N.
(d) Let n ∈ N, and put Γn := G/Gn. Write ei for the image of ei in Γn. Show

that every element g ∈ Γn can be written uniquely in the form g = eλ1
1 eλ2

2 · · · e
λn−1

n−1

with exponents λi ∈ {0, 1, . . . , p− 1}.
(e) Let n ∈ N, and suppose that p > 2. Determine the commutator subgroup
[Γn, Γn] of Γn and show that it coincides with the Frattini subgroup. Conclude
that e1 and e2 form a minimal generating pair for Γn.
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(f) Suppose that p > 2. Work out the lower central series for Γp+1 and determine
the graded Lie ring associated to this group with respect to its lower central series,
as described in Section 2.4.
(g) Suppose that p > 2. Work out the lower central series of Γp+2. Can you guess
the general pattern of the lower central series of Γn as n→∞? See whether your
guess is consistent with the following formula: for n ≥ 3 the nilpotency class of
Γn is equal to (n− 2)− b(n− 3)/pc.

Exercise 4.4 (Non-archimedean absolute values and p-adic numbers).
(a) Prove that the adelic formula stated in Section 2.5 holds.
(b) Compute the standard representation

∑∞
k=0 ak3

k of −13 in the ring Z3 of 3-adic
integers. Show that 5 has a multiplicative inverse in the ring Z3, by displaying
the standard representation of such an element. Prove that 11 has no square root
in Z3, but convince yourself that 7 does by computing the first five coefficients of
the standard representation of a potential root.
Prove that 2 has no square root in Q2. Now suppose that p > 2. Convince yourself
that 2 has a square root in Qp if and only if it has one in Zp. Then show that
2 has a square root in Zp if and only if 2 admits a square root modulo p. (Hint:
Look at the quotient Zp/pZp to see that the condition is necessary. Now suppose
that x ∈ Zp satisfies x2− 2 ≡ 0 modulo p. Then x2− 2 = pa for a suitable a ∈ Zp.
Write x̃ = x + py with y ∈ Zp to be specified. Since 2x ∈ Z∗

p, the congruence

p(2xy + a) ≡ x2 + 2pxy + p2y2 − 2 = x̃2 − 2 ≡ 0 (mod p2)

can be solved for y ∈ Zp. Now continue inductively to find a Cauchy sequence
x, x̃, . . . in Zp whose limit gives a precise square root of 2.)
Remark: This procedure is a particular instance of Hensel’s Lemma.
(c) Let |·| be a non-archimedean absolute value on a field K. Prove that for all
x, y ∈ K with |x| 6= |y| the ultrametric triangle inequality specialises to |x + y| =
max{|x|, |y|}.
Suppose further that K is complete with respect to the metric d(x, y) = |x − y|
induced by the absolute value. Conclude that for any sequence (an)n∈N in K the
series

∑∞
n=1 an converges in K if and only if |an| → 0 for n → ∞. For which p

does the harmonic series
∑∞

n=1 n−1 converge in Qp?
(d) Suppose that p > 2. Given that vp(n!) ≤ (n − 1)/(p − 1) for all n ∈ N,
show that the exponential series exp(x) =

∑∞
n=0 xn/n! converges for all x ∈ pZp.

Deduce that the exponential series induces an isomorphism of topological groups
from the additive group pZp onto the multiplicative group of one-units 1 + pZp.
Remark: Clearly, the additive groups pZp and Zp are isomorphic. It can be shown
that the subgroup 1 + pZp of the abelian group Z∗

p admits a cyclic complement so
that Z∗

p
∼= Zp × Cp−1.

(e) Show that the additive group Z2 and the multiplicative group 1 + 2Z2 are not
isomorphic. Can you mend the situation by considering a subgroup of finite index
in 1 + 2Z2 and subsequently determine the structure of Z∗

2?
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Exercise 4.5 (Point-set topology and topological groups).
(a) Show that GL2(R), with respect to the natural topology, is a locally-compact,
Hausdorff topological group. Is this group connected? If not, how many connected
components does it have? (Hint: Think of determinants and canonical forms of
matrices.)
Show that GL2(Z) is a discrete subgroup of GL2(R). Can you give an example
of an infinite compact subgroup of GL2(R)? (Hint: Think of rotation matrices.)
Does GL2(R) admit any open compact subgroups?
(b) Let X, Y be topological spaces. Prove the following assertions from first prin-
ciples. (i) If X is Hausdorff, then every compact subset of X is closed. (ii) If X
is compact, then every closed subset of X is compact. (iii) If X is compact and
Y is Hausdorff, then every continuous bijection f : X → Y is a homeomorphism.
(iv) Every compact Hausdorff space is locally-compact.
(c) Regard Cp as a topological group, equipped with the discrete topology. Con-
vince yourself that Cp is totally-disconnected, compact and Hausdorff. Using
Tychonoff’s Theorem and first principles, deduce that G :=

∏
k∈Z Cp is a totally-

disconnected, compact, Hausdorff topological group. Does G admit a finitely
generated dense subgroup?
Let V =

⊕
k∈Z Fpek be a vector space over Fp of countably infinite dimension.

Show that the underlying abelian group of the dual space V̌ := HomFp(V, Fp) is

isomorphic to G. What is the dimension of the Fp-vector space V̌ ? Does G admit
a countably generated dense subgroup?
(d) Let G be a topological group. Prove the following assertions from first princi-
ples. (i) For each g ∈ G, the maps x 7→ xg, x 7→ gx and x 7→ xg are homeomor-
phisms of G. (ii) If H is a subgroup of G and H is closed (respectively open), then
every coset of H in G is closed (respectively open). (iii) Every open subgroup of
G is closed. (iv) If H is a subgroup of G, then its closure cl(H) is also a subgroup
of G. (v) If H is a subgroup of G and H contains a non-empty open subset of
G, then H is open in G. (vi) The group G is Hausdorff if and only if {1} is a
closed subset of G. (Hint: To see that the condition is sufficient consider x, y ∈ G
with x−1y 6= 1. In order to find disjoint open neighbourhoods of x and y, look
at a suitable open neighbourhood of (1, 1) in G × G which is fully contained in
the preimage of G \ {x−1y} under the continuous map (g, h) 7→ g−1h.) (v) If N is
a closed normal subgroup of G and G is Hausdorff, then G/N is Hausdorff with
respect to the quotient topology.
(e) Show that GL2(Qp), viewed as a topological group with respect to the natu-
ral topology, is totally-disconnected, locally-compact and Hausdorff. Prove that
GL2(Zp) is an open compact subgroup of GL2(Qp).
Is GL2(Z) a dense subgroup of GL2(Zp)? (Hint: Try to reduce a given matrix to
the identity matrix modulo pn by elementary row and column operations.) If not,
determine the closure of GL2(Z) in GL2(Zp).
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5. Second Lecture

5.1. Powerful finite p-groups. The theory of finite p-groups and, more gener-
ally, pro-p groups is very much governed by the interplay between commutators
and pth powers. In some sense it is the right mixture of the two concepts that
makes p-adic Lie groups work the way they do. An important class of finite p-
groups, defined in terms of this interconnection, is the class of powerful finite
p-groups, which was introduced by Mann, and developed by him and Lubotzky in
the 1980s.5

Let G be a finite p-group. The group G is powerful if p is odd and G/Gp is
abelian, or if p = 2 and G/G4 is abelian. More generally, a subgroup N ≤ G is
powerfully embedded in G if p is odd and [N, G] ⊆ Np, or p = 2 and [N, G] ⊆ N4.

Thus G is powerful if and only if it is powerfully embedded in itself; and if N
is powerfully embedded in G, then N E G and N is powerful. When p is odd, G
is powerful if and only if Φ(G) = Gp; for p = 2 the equation Φ(G) = G2 always
holds. Clearly, every abelian finite p-group is powerful, and one should think of
‘powerful’ as a generalisation of ‘abelian’.

Proposition 5.1. If G is a finite p-group and N is powerfully embedded in G,
then Np is powerfully embedded in G.

Sketch of proof for p > 2. Let G be a finite p-group and let N ≤ G with [N, G] ⊆
Np. It suffices to show that [Np, G] ⊆ [N, G]p. Passing to the quotient G/[N, G]p,
if necessary, we may assume that [N, G]p = 1. Since G is nilpotent, we have
[K, G] � K for every non-trivial normal subgroup K E G. Hence we may further
assume that [[Np, G], G] = 1. This implies that [[N, G], G] ⊆ Z(G).

Let x ∈ N and g ∈ G. Then [[x, g], xi] ∈ Z(G) for i ∈ {0, . . . , p− 1}, and

p−1∏
i=0

[[x, g], xi] =

p−1∏
i=0

[[x, g], x]i = [[x, g], x]p(p−1)/2.

Since p is odd and [N, G]p = 1, this shows that

[xp, g] = [x, g]x
p−1 · [x, g]x

p−2 · · · [x, g]

= [x, g] [[x, g], xp−1] · [x, g] [[x, g], xp−2] · · · [x, g]

= [x, g]p
p−1∏
i=0

[[x, g], xi]

= [x, g]p [[x, g], x]p(p−1)/2 = 1.

Hence [Np, G] = 1, as wanted. �

The lower p-series of a group G is the descending series

G = P1(G) ≥ P2(G) ≥ . . . , where Pi+1(G) = Pi(G)p[Pi(G), G].

A basic property of this sequence is that [Pi(G), Pj(G)] ⊆ Pi+j(G) for all i, j ∈ N.
Now suppose that G is a finite p-group. Then P2(G) = Φ(G) and, more generally,

5Another more classical class of finite p-groups, which is defined in terms of commutators and
pth powers, comprises the regular p-groups, introduced by Hall in the 1930s. A finite p-group G
is regular if for all x, y ∈ G one has (xy)p ≡ xpyp modulo γ2(〈x, y〉)p.
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Pi+1(G) ⊇ Φ(Pi(G)) for all i. The lower p-series of a powerful finite p-group
behaves rather well.

Proposition 5.2. Let G = 〈a1, . . . , ad〉 be a powerful finite p-group. Writing
Gi := Pi(G) for i ∈ N, the following assertions hold,

(1) Gi is powerfully embedded in G;

(2) Gi+k = Pk+1(Gi) = Gpk

i for each k ∈ N, and in particular Gi+1 = Φ(Gi);

(3) Gi = Gpi−1
= {xpi−1 | x ∈ G} = 〈api−1

1 , . . . , api−1

d 〉;
(4) the map x 7→ xpk

induces a homomorphism from Gi/Gi+1 onto Gi+k/Gi+k+1

for each k ∈ N.

Corollary 5.3. If G = 〈a1, . . . , ad〉 is a powerful finite p-group, then G decomposes
as a product of its cyclic subgroups 〈ai〉, i.e. G = 〈a1〉 · · · 〈ad〉.

Sketch of proof for p > 2. The assertions of the proposition and the corollary are
established by induction, based on Proposition 5.1. As examples we give the proofs
of parts (1) and (4).

(1) Since G1 = G is powerful, the group G1 is powerfully embedded in G.
Suppose that i ≥ 2. By induction, Gi−1 is powerfully embedded in G. Then
Gi = Gp

i−1[Gi−1, G] = Gp
i−1, and Proposition 5.1 shows that Gi is powerfully

embedded in G.
(4) Clearly, it suffices to consider the case k = 1. The argument above shows

that Gi is powerful, Gi+1 = P2(Gi) = Gp
i and Gi+2 = P3(Gi). Changing notation,

we may assume that i = 1. Furthermore, passing from G to G/G3 we may assume
that G3 = 1 so that [G, G] ⊆ G2 ⊆ Z(G) and [G, G]p ⊆ Gp

2 ⊆ G3 = 1. As p is odd,
we have for all x, y ∈ G,

(xy)p = xpyp[x, y]−p(p−1)/2 = xpyp.

Thus the map x 7→ xp induces a homomorphism from G/G2 onto G2/G3. �

For any group G let d(G) denote the minimal cardinality of a generating set for
G. The rank of a finite group G is defined to be rk(G) := max{d(H) | H ≤ G}.
If G is a finite p-group, then d(G) is simply the dimension of G/Φ(G) as a vector
space over Fp, but there is no comparable general description of the more subtle
invariant rk(G).

Theorem 5.4. Let G be a powerful finite p-group. Then rk(G) = d(G), in other
words d(H) ≤ d(G) for all H ≤ G.

Proof (by induction on |G|). Let H ≤ G and put d := d(G). Write Gi := Pi(G)
for i ∈ N, and put d2 := d(G2). Proposition 5.2 shows that G2 is powerful, hence by
induction the group K := H ∩G2 satisfies d(K) ≤ d2. Put e := d(HG2/G2) ≤ d.
Our aim is to find h1, . . . , he ∈ H and y1, . . . , yd−e ∈ K such that

HG2 = 〈h1, . . . , he〉G2 and K = 〈hp
1, . . . , h

p
e, y1, . . . , yd−e〉.

This will imply H = 〈h1, . . . , he, y1, . . . , yd−e〉 and d(H) ≤ d, as wanted.
According to Proposition 5.2, the map x 7→ xp induces a homomorphism π from

G/G2 onto G2/G3. Both groups are elementary p-groups, so we may regard them
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as vector spaces over Fp. Basic linear algebra allows us to bound the dimension
of the image (HG2/G2)π over Fp:

dim((HG2/G2)π) = dim(HG2/G2)− dim(ker π ∩HG2/G2)

≥ dim(HG2/G2)− dim(ker π)

= dim(HG2/G2)− (dim(G/G2)− dim(G2/G3)

= e− (d− d2)

= d2 − (d− e).

Let h1, . . . , he ∈ H such that HG2 = 〈h1, . . . , he〉G2. Observe that Φ(K) ⊆
Φ(G2) = G3. Hence the subspace of K/Φ(K) spanned by the cosets of hp

1, . . . , h
p
e

has dimension at least dim((HG2/G2)π) ≥ d2 − (d − e). Since dim(K/Φ(K)) =
d(K) ≤ d2, we find d− e elements y1, . . . , yd−e ∈ K such that

K = 〈hp
1, . . . , h

p
e, y1, . . . , yd−e〉Φ(K) = 〈hp

1, . . . , h
p
e, y1, . . . , yd−e〉.

�

The naive converse of the theorem is false, but a more complex statement is
true: every finite p-group admits a powerful normal subgroup of index bounded
by a function of rk(G).

Theorem 5.5. Let G be a non-trivial finite p-group of rank r := rk(G), and write
λ(r) := dlog2(r)e if p is odd, λ(r) := dlog2(r)e + 1 if p = 2. Then G admits a
powerful characteristic subgroup of index at most prλ(r).

This result can be see as an invitation into the world of pro-p groups. Indeed, it
can be translated to characterise pro-p groups of finite rank as virtually powerful
pro-p groups; see Section 5.7. Pro-p groups are special kinds of profinite groups,
and we shall not delay their introduction any longer.

5.2. Profinite groups as Galois groups. The fundamental theorem of Galois
theory sets up a correspondence between the intermediate fields of a finite Galois
extension L|K and the subgroups of the associated Galois group G(L|K). In fact,
it generalises to infinite Galois extensions, with an interesting twist.

Consider a general Galois extension L|K, i.e. a separable splitting field L for a
(possibly infinite) family of polynomials over a ground field K. Then L is the union
L =

⋃
{Li | i ∈ I} of its finite Galois subextensions Li|K. The set {Li | i ∈ I} is

partially ordered by the inclusion relation. It has the property that for all Li, Lj

there exists Lk such that Lk ⊇ Li and Lk ⊇ Lj; just think in terms of splitting
fields. Writing i � j whenever Li ⊇ Lj, the last observation can be stated as
follows: for all i, j ∈ I there exists k ∈ I such that k � i and k � j.

The Galois group G(L|K) is, of course, defined as the group of all automor-
phisms of L which fix K element-wise. Every automorphism α ∈ G(L|K) is
uniquely determined by its restrictions α|Li

, i ∈ I, and the normality of L|K
and its subextensions Li|K guarantees that each of the restriction maps ϕi :
G(L|K) → G(Li|K) is onto. Clearly, there is a certain compatibility condition
that the restrictions of α to the various Li satisfy, namely (α|Li

)|Lj
= α|Lj

when-
ever Li ⊇ Lj. Writing ϕij : G(Li|K) → G(Lj|K) for the natural restriction map
whenever Li ⊇ Lj, the compatibility condition can be rephrased as: ϕiϕij = ϕj
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whenever i � j. A similar conditions in terms of the restrictions alone can be
stated as: ϕijϕjk = ϕik whenever i � j � k.

We are now ready to describe the Galois group G := G(L|K). Writing Gi :=
G(Li|K), the coordinate map

ϕ : G→
∏

i∈I
Gi, g 7→ (gϕi)i∈I

induces an isomorphism from G onto the group

Gϕ =
{

(gi)i∈I ∈
∏

i∈I
Gi | giϕij = gj whenever i � j

}
.

But what happens to the Galois correspondence? It turns out that only certain
subgroups of G correspond to intermediate fields of L|K. To describe why this
is so and which subgroups play a role in the Galois correspondence we equip
G with the Krull topology. Regarding each of the finite Galois groups Gi as a
discrete topological group, the product

∏
i∈I Gi naturally becomes a topological

group which is totally-disconnected, compact and Hausdorff. The subgroup Gϕ is
easily seen to be closed, so its isomorphic twin G becomes a totally-disconnected,
compact, Hausdorff topological group. We have seen how the structure of G is
determined by its finite images Gi. In Section 5.3 we will formalise this process
to see that G is the inverse (or projective) limit of the inverse system (Gi; ϕi,j) of
finite groups, and thus G becomes a profinite group.

If M is an intermediate field of the extension L|K then the set GM of all
g ∈ G which fix M element-wise can be described in terms of the restrictions of
automorphisms to (the normal closures of) finite subextensions of M . Indeed, GM

can be written as the intersection of closed open subgroups of G and thus forms
a closed subgroup with respect to the Krull topology. The Galois correspondence
for finite Galois extensions then readily generalises to yield

Theorem 5.6 (Fundamental theorem of Galois theory). The Galois group G of
a (typically infinite) Galois extension L|K is a profinite group with respect to the
Krull topology. There is an inclusion-reversing correspondence between the lattice
of all closed subgroups of G and the lattice of all intermediate fields of L|K.

It can be shown that every profinite group is isomorphic to the Galois group of
a suitable Galois extension. One of the fundamental problems in number theory is
to describe the finite extensions of a given local field K, such as K = Qp. This is
equivalent to understanding the absolute Galois group G(K|K), where K denotes
the separable closure of K. Local class field theory provides a rather explicit and
very satisfying description of all abelian extensions, i.e. Galois extensions with
abelian Galois groups: the lattice of abelian extensions of the local field K has a
precise reflection in the multiplicative group K∗ via the norm residue symbol. In
1982 Jannsen and Wingberg gave a description of the full Galois group G(K|K)
of a local field of characteristic 0 in terms of generators and relations. A quite
different and far-reaching approach is described by the Langlands Conjectures.

5.3. Profinite groups as inverse limits. The description of Galois groups in
terms of their finite factors can be formalised as follows. A directed set is a partially
ordered set I = (I,�) such that for all i, j ∈ I there exists k ∈ I such that k � i
and k � j. An inverse system (Gi; ϕij) of groups (or other mathematical structures
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such as sets, rings, topological spaces, etc.) over I consists of a family of groups
(or sets, . . . ) Gi, i ∈ I, and homomorphisms (or maps, . . . ) ϕij : Gi → Gj

whenever i � j, satisfying the natural compatibility conditions

ϕii = idGi
and ϕijϕjk = ϕik for all i, j, k ∈ I with i � j � k.

The inverse limit of the inverse system (Gi; ϕij) is the group (or set, . . . )

lim←−Gi :=
{

(gi)i∈I ∈
∏

i∈I
Gi | giϕij = gj whenever i � j

}
together with the natural coordinate maps ϕi : G → Gi. It is the (unique)
solution to an appropriate universal problem; see Exercise 6.3. In the special, but
important case where I = N and � is the ordinary order-relation ≤ we can think
of the inverse limit pictorially as the ‘limit object’ to a chain of homomorphisms

G = lim←−Gi

ϕi
��

S J
>

3
, ϕ3

$$

_ ] \ Z X V T S P N L
J ϕ2

&&

_ ^ ] [ Z X W U T R Q
O

M
ϕ1

((

` _ ^ ] \ [ Z X W V U S
R

Q
. . . . . .

ϕi+1,i

// Gi ϕi,i−1

// . . .
ϕ43

// G3 ϕ32

// G2 ϕ21

// G1

Figure 2. Pictorial description of the inverse limit G of an inverse
system (Gi;ϕij) of groups (or sets, . . . ).

If the Gi are finite groups, we give each of them the discrete topology, and∏
i∈I Gi the product topology. Then lim←−Gi with the induced topology becomes

a totally-disconnected, compact, Hausdorff topological group. Such a group is
known as a profinite group, which is short for projective limit of finite groups.

Every finite group is a profinite group. As we have seen in the previous subsec-
tion natural examples of infinite profinite groups are given by Galois groups. The
simplest such is perhaps the absolute Galois group G(Fq|Fq) of a finite field Fq.
From field theory we know that Fq has precisely one extension of any given finite
degree and that all these extensions are Galois with cyclic Galois group. The
corresponding inverse system consists of the cyclic groups Gn

∼= Z/nZ, n ∈ N,
with ϕmn given by the natural projections Z/mZ → Z/nZ whenever n | m. The

inverse limit of this inverse system is the procyclic group Ẑ := lim←−Z/nZ.

In fact, Ẑ can be regarded as a profinite ring, simply by going through the same
construction, considering each Z/nZ not simply as a group but as a ring. There is

an interesting connection between Ẑ and the rings of p-adic integers: Ẑ =
∏

p Zp

as topological rings; see Exercise 6.1.

5.4. Profinite groups as profinite completions. An impressively fruitful theme
in infinite group theory builds upon the following unassuming question: how do
the finite images of an infinite group affect its structure? A group G is residually
finite if the intersection of all its finite-index subgroups is trivial. Residually fi-
nite groups are the groups whose structure one can hope to understand in terms
of finite images, and they form quite a large class. For instance, every finitely
generated linear group is residually finite.
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Let Γ be any group. It is convenient to use the notation H ≤f Γ to indicate
that H is a subgroup of finite index in Γ. Note that the finite quotients of Γ form
a natural inverse system Γ/N , N Ef Γ, with ϕMN given by the natural projection
Γ/M → Γ/N whenever M ⊆ N . The inverse limit of this inverse system is the

profinite completion Γ̂ := lim←−Γ/N of Γ. There is a natural map from the original
group into its profinite completion, namely

ϑ : Γ→ Γ̂, g 7→ (gN)NEfΓ.

If Γ is residually-finite, then ϑ is injective. Typically, Γϑ is strictly contained in
Γ̂, but it always forms a dense subgroup. The notation Ẑ is no coincidence: the
procyclic group Ẑ can be regarded as the profinite completion of the infinite cyclic
group.

5.5. Profinite groups as topological groups. Profinite groups are topological
groups which are totally-disconnected, compact and Hausdorff. Indeed, it can be
shown that the converse holds. But for our purposes the following characterisation
is perhaps more useful: a profinite group is a compact Hausdorff topological group
G such that every open neighbourhood of the neutral element 1 contains an open
subgroup. This means that the open subsets of a profinite group G are precisely
those sets which can be written as unions of cosets gN of open normal subgroups
N Eo G.

Profinite groups are typically quite large, i.e. uncountable, and therefore rather
unwieldy as abstract groups. But our interest is mainly focused on closed sub-
groups. So group theoretic notions and constructions should be employed with a
topological twist. Often it is agreed implicitly that this approach is being taken.

For instance, let G be a profinite group and X ⊆ G. Then X is said to generate
G (topologically) if X generates a dense subgroup of G. Accordingly, G is finitely
generated (as a topological group), if it admits a finite (topological) generating
set. We denote by d(G) the minimal cardinality of a (topological) generating set
for G. In order to check whether a given subset X generates a profinite group
G, it suffices to show that X generates G modulo every open normal subgroup
N Eo G; see Exercise 6.3. Thus one has d(G) = sup{d(G/N) | N Eo G}.

The Frattini subgroup Φ(G) of a profinite group G is the intersection of all
maximal proper open subgroups of G. Since every open subgroup is closed, it
follows that Φ(G) is a closed subgroup of G. Furthermore, one can show that
X ⊆ G generates G if and only if X generates G modulo Φ(G).

Every open subgroup of a profinite group G has finite index in G. A recent
theorem of Nikolov and Segal, relying on the classification of finite simple groups,
states that in a finitely generated profinite group G every finite-index subgroup is
open; see Exercise 6.5. So in the case of finitely generated profinite groups, the
topology is uniquely determined by the algebraic structure of the group.

5.6. Pro-p groups. A pro-p group is a topological group which is isomorphic to
the inverse limit of finite p-groups. Every group Γ admits a pro-p completion Γ̂p,
which is the pro-p group arising from the inverse system of finite quotients Γ/N
where N runs through all normal subgroups of p-power index in Γ.

Let G be a pro-p group. Then every closed subgroup of G is a pro-p group and
any quotient of G by a closed normal subgroup is a pro-p group. In particular,
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the index of any open subgroup of G is a power of p; see Exercise 6.5. The
Frattini subgroup of G is equal to the closure of the abstract Frattini subgroup,
i.e. Φ(G) = cl(Gp[G, G]). In particular, one has d(G) = dimFp G/Φ(G).

The category of pro-p groups is quite large. Our main focus will be on the class
of pro-p groups of finite rank (which are the same as p-adic analytic pro-p groups),
but we give a variety of examples.

(1) The additive group of p-adic integers Zp is the most basic infinite pro-p
group. It plays a similar role as the infinite cyclic group in abstract group
theory; see Exercise 6.1.

(2) The Sylow theorems for finite groups carry over to profinite groups: every
pro-p subgroup of a profinite group G is contained in a maximal pro-p sub-
group, and any two maximal pro-p subgroups of G are conjugate in G; see
Exercise 6.4. Maximal pro-p subgroups of G are called Sylow pro-p subgroups.

(3) Matrix groups over Zp are virtually pro-p groups; see Exercise 6.2. According
to Lazard, they constitute the class of compact p-adic Lie groups. Typical
examples of p-adic analytic pro-p groups are the Sylow pro-p subgroups of
GLd(Zp).

(4) Let d ∈ N and F a free group on d generators. Then the pro-p completion F̂p,
known as a free pro-p group, can be seen to be a free object (on d generators)
in the category of pro-p groups.

(5) The Nottingham group over Fp, which was introduced in Exercise 4.3 is a
finitely generated pro-p group. It is virtually isomorphic to the automor-
phism group of a local field of characteristic p. The Nottingham group has
remarkable properties, e.g. it can be shown that every finitely generated
pro-p group embeds into it as a closed subgroup.

Next we return our attention to the concept of powerful groups, which we intro-
duced in Section 5.1.

5.7. Powerful pro-p groups. Let G be a pro-p group. The group G is powerful
if p is odd and G/ cl(Gp) is abelian, or if p = 2 and G/ cl(G4) is abelian. More
generally, a subgroup N ≤c G is powerfully embedded in G if p is odd and [N, G] ⊆
cl(Np), or p = 2 and [N, G] ⊆ cl(N4). Thus G is powerful if and only if G
is powerfully embedded in itself; and if N is powerfully embedded in G, then
N Ec G and N is powerful.

The lower p-series of a topological group G is the descending series

G = P1(G) ≥ P2(G) ≥ . . . , where Pi+1(G) = cl(Pi(G)p[Pi(G), G]).

A basic property of this sequence is that [Pi(G), Pj(G)] ⊆ Pi+j(G) for all i, j ∈ N.
Proposition 5.2 easily translates into

Proposition 5.7. Let G = cl〈a1, . . . , ad〉 be a finitely generated powerful pro-p
group. Writing Gi := Pi(G) for i ∈ N, the following assertions hold,

(1) Gi is powerfully embedded in G;

(2) Gi+k = Pk+1(Gi) = Gpk

i for each k ∈ N, and in particular Gi+1 = Φ(Gi);

(3) Gi = Gpi−1
= {xpi−1 | x ∈ G} = cl〈api−1

1 , . . . , api−1

d 〉;
(4) the map x 7→ xpk

induces a homomorphism from Gi/Gi+1 onto Gi+k/Gi+k+1

for each k ∈ N.
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Corollary 5.8. If G = 〈a1, . . . , ad〉 is a powerful pro-p group, then G decomposes
as a product of its procyclic subgroups cl〈ai〉, i.e. G = cl〈a1〉 · · · cl〈ad〉.

The rank of a profinite group G is defined to be rk(G) := sup{d(H) | H ≤o G}.
It can be shown that

rk(G) = sup{d(H) | H ≤c G} = sup{rk(G/N) | N Eo G};
see Exercise 6.3. Theorems 5.4 and 5.5 translate readily into

Theorem 5.9 (Characterisation of pro-p groups of finite rank). A pro-p group
has finite rank if and only if it is finitely generated and virtually powerful.

Moreover, if G is a finitely generated powerful pro-p group, then rk(G) = d(G).

The detailed proof of Theorem 5.5 also yields the following interesting ‘local’
description of pro-p groups of finite rank.

Theorem 5.10. Let G be a pro-p group and r ∈ N. If every open subgroup of G
contains an open normal subgroup N Eo G with d(N) ≤ r, then G has finite rank.

5.8. Pro-p groups of finite rank – summary of characterisations. There is
a variety of other characterisations of the class of pro-p groups of finite rank. For
instance, a pro-p group has finite rank if and only if it has polynomial subgroup
growth; see Exercise 6.6. Considerably deeper, but most interesting is the result
that a pro-p group has finite rank if and only if it admits the structure of a p-adic
Lie group. By way of a short summary we record

Theorem 5.11 (Pro-p groups of finite rank – summary of characterisations).
Let G be a pro-p group. Then each of the following conditions is necessary and
sufficient for G to have finite rank:

(1) G is finitely generated and virtually powerful;
(2) there exists r ∈ N such that every open subgroup of G contains an open

normal subgroup N Eo G with d(N) ≤ r;
(3) G has polynomial subgroup growth;
(4) G is isomorphic to a closed subgroup of GLd(Zp) for suitable d ∈ N;
(5) G is a p-adic analytic group.

We conclude this section by stating an intriguing problem which aims at yet
another interesting characterisation of pro-p groups of finite rank. A profinite
group G is said to be noetherian if it satisfies the ascending chain condition on
closed subgroups.6 It is easily seen that a pro-p group G is noetherian if and
only if every closed subgroup of G is finitely generated. Consequently, every
pro-p group of finite rank is noetherian. In fact, if G is a pro-p group of finite
rank, then there is a uniform bound on the lengths of chains of closed subgroups
1 = G0 ⊆ G1 ⊆ . . . ⊆ Gn = G with |Gi : Gi−1| = ∞ for all i ∈ {1, . . . , n}. This
bound is given by the dimension of G; see Section 7.1.

The following rather natural problem, which was posed by Lubotzky and Mann,
has been open for twenty years.

Problem. Does every noetherian pro-p group have finite rank?

6In point-set topology it is customary to call a topological space noetherian if it satisfies
the ascending chain condition on open subsets, but this notion is of little use in the context of
profinite groups: a non-discrete profinite group never satisfies the ascending chain condition on
open subsets. This should be contrasted with the observation that every profinite group satisfies
trivially the ascending chain condition on open subgroups.
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6. Second set of exercises

Exercise 6.1 (Procyclic groups and p-adic exponentiation).

(a) Recall that Ẑ = lim←−Z/nZ is the profinite completion of Z. Show that the ring
Zp of p-adic integers is isomorphic to the pro-p completion of the ring Z.

(b) Show that the profinite ring Ẑ decomposes as Ẑ =
∏

p Zp.

(c) The profinite topology on Z is the topology whose open sets are the unions of
cosets a + bZ with a, b ∈ Z and b 6= 0. Show that this agrees with the subspace
topology coming from the inclusion Z ⊆ Ẑ. Note that every non-empty open
subset of Z is infinite. Deduce from the equation {1,−1} = Z \

⋃
{pZ | p prime}

that there are infinitely many primes.
(d) Let G be a pro-p group. Let g ∈ G and λ =

∑∞
k=0 akp

k ∈ Zp. Write λn :=∑n
k=0 akp

k to denote the partial sums, and show that the limit limn→∞ gλn exists.
Denote this limit by gλ, the λth power of g.
Let g, h ∈ G and λ, µ ∈ Zp. Convince yourself that p-adic exponentiation satisfies
the common rules gλ+µ = gλgµ and gλµ = (gλ)µ. Find a sufficient condition under
which the equation (gh)λ = gλhλ holds.
(e) Let G be a pro-p group and g ∈ G. Prove that p-adic exponentiation provides
a surjective homomorphism Zp → cl〈g〉, λ 7→ gλ.
Remark: A profinite group which is (topologically) generated by one element is
called a procyclic group.
(f) Prove that a procyclic pro-p group is either finite and cyclic or isomorphic
to Zp. Show more generally that a finitely generated abelian pro-p group G is
isomorphic to Zd

p × F for some d ∈ N0 and a finite abelian p-group F . (Hint:
Regard G as a finitely generated Zp-module.)

Exercise 6.2 (Explicit examples of pro-p groups).
(a) Let d ∈ N. Prove that GLd(Zp) is virtually a pro-p group. Can you guess a
candidate for an open powerful pro-p subgroup of GLd(Zp)? (Hint: Consider the
first congruence subgroup GL1

d(Zp) = {g ∈ GLd(Zp) | g ≡ 1 (mod p)}.)
(b) The Heisenberg group over Zp is the group of upper uni-triangular 3 × 3
matrices over Zp. Work out the lower p-series of this group. Is it a powerful pro-p
group? If not, is it of finite rank?
(c) Suppose that p > 2. Consider the Nottingham group G over Fp, which was
introduced in Exercise 4.3. Convince yourself that G is a topological group with
respect to the subspace topology, inherited from Fp[[t]]. Show that G is a two-
generated pro-p group. Is it powerful? If not, is it of finite rank? (Hint: Consider
the abelianisations of its natural subgroups Gn := {a ∈ G | a ≡ t mod tn+1}.)
(d) Construct surjective homomorphisms from Cp o Cpn+1 onto Cp o Cpn for all
n ∈ N. (Hint: Realise Cp o Cpn as the semidirect product of Fp[X]/(Xpn − 1) by
〈x〉 ∼= Cpn , with x acting as multiplication by X. Then convince yourself that

there is a natural projection Fp[X]/(Xpn+1 − 1) → Fp[X]/(Xpn − 1).) Set up a
corresponding inverse system and take the inverse limit. The resulting group is
the pro-p wreath product Cp ô Zp. Show that this group is two-generated but has
infinite rank.
Remark: In a loose sense, Cp ô Zp can be regarded as the smallest pro-p group
which is not p-adic analytic.
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Exercise 6.3 (Profinite groups: generating sets, universal property, rank).
(a) Let G be a profinite group and X ⊆ G. Show that cl(X) =

⋂
{XN | N Eo G}.

Deduce that X generates G if and only if X generates G modulo every open normal
subgroup N Eo G.
(b) Prove that every open subgroup of a finitely generated profinite group is finitely
generated. (Hint: Use the corresponding result for abstract groups, namely: every
finite-index subgroup of a finitely generated group is finitely generated.)
(c) Let (Gi; ϕij) be an inverse system of groups based on a directed set I. Let
G = lim←−Gi, and let ϕi : G → Gi denote the ith coordinate map. Show that
(G; ϕi) is characterised by the following universal property: given a group H and
homomorphisms ϑi : H → Gi, i ∈ I, such that ϑiϕij = ϑj whenever i � j, there is
a unique homomorphism ϑ : H → G such that ϑi = ϑϕi for all i ∈ I. (Hint: Start
by drawing a corresponding diagram.)
(d) Convince yourself that every profinite group G is isomorphic to the inverse
limit lim←−G/N of its (continuous) finite quotients G/N , N Eo G.
(e) Let G be a profinite group. Prove that rk(G) = sup{d(H) | H ≤c G} =
sup{rk(G/N) | N Eo G}. For N Ec G show that max{rk(N), rk(G/N)} ≤
rk(G) ≤ rk(N)+rk(G/N). Deduce that, if G has an open subgroup of finite rank,
then G itself has finite rank.

Exercise 6.4 (Profinite groups: Sylow theory and finite images).
(a) Deduce from Tychonoff’s Theorem the following set-theoretical principle which
frequently allows one to deduce properties of a profinite group from properties of
its finite quotients: the inverse limit lim←−Xi of an inverse system of non-empty
finite sets Xi, i ∈ I, is non-empty. (Hint: Enforce the compatibility conditions in
finite portions.)
(b) Let G be a profinite group. A Sylow pro-p subgroup of G is a maximal pro-p
subgroup. Deduce from the Sylow theorems for finite groups that (i) every pro-p
subgroup of G is contained in a Sylow pro-p subgroup and that (ii) any two Sylow
pro-p subgroups of G are conjugate. (Hint: Use part (a) and take advantage of
the fact that a profinite group is a pro-p group if and only if all its open subgroups
have p-power index; see Exercise 6.5.)
(c) Prove that two finitely generated profinite groups are isomorphic if and only if
they have the same class of finite groups as their finite (continuous) homomorphic
images. (Hint: Set up a suitable inverse system of isomorphisms between finite
(continuous) quotients of the two groups and use part (a).)
Give an example of two non-isomorphic pro-p groups which have the same class
of finite groups as their finite (continuous) homomorphic images.
(d) Let Γ be a group and denote by G := lim←−NEfΓ

Γ/N its profinite completion.

Write ϑ : Γ → G for the natural homomorphism g 7→ (gN)N . Show that ϑ
induces an isomorphism Γ/N → G/ cl(Nϑ) for each N Ef Γ. Prove that every
open subgroup of G is of the form cl(Hϑ) where H ≤f Γ.
Let Γ and ∆ be finitely generated groups. Deduce from part (c) that their profinite

completions Γ̂ and ∆̂ are isomorphic if and only if Γ and ∆ have the same class
of finite groups as their finite homomorphic images.
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Exercise 6.5 (Abstract finite-index subgroups of pro-p groups).
(a) Give an example of a pro-p group admitting finite-index subgroups which are
not open. (Hint: Your group cannot be finitely generated.)
(b) Let G be a pro-p group and H ≤o G. Show that |G : H| is a power of p. (Hint:
If G = lim←−Gi, think of G as subgroup of

∏
Gi and use that basic open subgroups

of this latter group have p-power index.)
(c) Let G be a pro-p group and H ≤f G. Show that |G : H| is a power of p. (Hint:
Replacing H by its core in G, you may assume that H is normal in G. Write
|G : H| = m = prq with p - q, and put X := {gm | g ∈ G}. Note that X ⊆ H
and that X is closed. Let g ∈ G. Show that gpr ∈ XN for every N Eo G. From
X =

⋂
{XN | N Eo G} conclude that gpr ∈ X. Deduce that |G : H| = pr.)

(d) Let G be a finitely generated pro-p group. Prove that the abstract commuta-
tor subgroup [G, G] is closed, using the following fact about (abstract) nilpotent
groups: if Γ = 〈a1, . . . , ad〉 is a nilpotent group, then every element of [Γ, Γ] is equal
to a product of the form [x1, a1] · · · [xd, ad] with x1, . . . , xd ∈ Γ. (Hint: Suppose
that G = cl〈a1, . . . , ad〉 and consider X := {[g1, a1] · · · [gd, ad] | g1, . . . , gd ∈ G}.
Show that X is closed and that X ≡ [G, G] modulo any open normal subgroup of
G. Conclude that [G, G] = X is closed.)
(e) Let G be a finitely generated pro-p group. According to part (d), the ab-
stract commutator subgroup [G, G] is closed. Observe that the abstract Frattini
subgroup Gp[G, G] can be written as {gp | g ∈ G}[G, G] and hence show that
Gp[G, G] is closed. Deduce that Gp[G, G] = Φ(G).
(f) Let G be a finitely generated pro-p group and H ≤f G. Prove that H is open
in G. (Hint: It is enough to prove the statement for normal subgroups. Arguing
by induction on |G : H|, suppose that H is properly contained in G. Since |G : H|
is a p-power, M := HΦ(G) = HGp[G, G] is a proper open subgroup of G. Note
that M is finitely generated and apply induction to find that H is open in M .)

Exercise 6.6 (Pro-p groups with polynomial subgroup growth).
Let G be a finitely generated pro-p group, and for every n ∈ N0 let σn denote the
number of open subgroups of index at most pn in G. The group G is said to have
polynomial subgroup growth (PSG) if there exist c, α ∈ R such that σn ≤ cpnα for
all n ∈ N0.

(a) Show that σn is finite for every n ∈ N.
(b) Show that, if G has finite rank, then G has PSG. – The remaining parts of the
exercise are concerned with proving the converse.
(c) Let r ∈ N, and let N Eo G be maximal with the property d(N) ≥ r. Show that
N is equal to the centraliser of N/Φ(N) in G. (Hint: Write C := CG(N/Φ(N)) Eo

G and assume for a contradiction that N $ C. Choose an element xN of order
p in C/N ∩ Z(G/N) and put M := 〈x〉N Eo G. Deduce that d(M) ≥ d(N), in
contradiction to N $ M .)
(d) Let V be a vector space of dimension d over Fp. Show that every p-subgroup
G of GL(V ) admits a chain of normal subgroups

G = G1 ⊇ G2 ⊇ . . . ⊇ Gλ(d) ⊇ Gλ(d)+1 = 1

of length λ(d) := dlog2(d)e such that the quotients Gi/Gi+1 of successive terms
are elementary abelian. (Hint: It suffices to prove that a Sylow p-subgroup of
GL(V ) has a chain of normal subgroups of length λ(d) such that the quotients
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of successive terms are elementary abelian. All Sylow p-subgroups of GL(V ) are
isomorphic to the group of upper uni-triangular matrices of degree d over Fp.)

Show that V contains at least p(d−1)2/4 subspaces of codimension bd/2c.
(e) Let r ∈ N, and let N Eo G be maximal with the property d := d(N) ≥ r.
Show that |G : N | ≤ p(r−1)λ(d) where λ(d) := dlog2(d)e. (Hint: By part (c), G/N
acts faithfully by conjugation on N/Φ(N) ∼= Fd

p. Note that every normal subgroup
of G/N can be generated by r − 1 elements and use part (d).)
(f) Suppose that G has PSG and let c, α ∈ R such that σn ≤ cpnα for all n ∈ N0.
Show that there is a finite upper bound for the numbers d(N) as N ranges over
all open normal subgroups of G. (Hint: Let r ∈ N, and suppose that N Eo G
is maximal with the property d := d(N) ≥ r. By considering suitable subgroups

of N/Φ(N) derive from parts (d) and (e) that G contains at least p(d−1)2/4 open
subgroups of index at most p(r−1)λ(d)+bd/2c. Use the fact that G has PSG to show
that d, and hence r, is bounded above in terms of c and α.)
(g) Deduce from (f) and Theorem 5.10: if G has PSG, then G has finite rank.
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7. Third Lecture

7.1. Uniformly powerful pro-p groups. A finitely generate torsion-free pow-
erful pro-p group is called a uniformly powerful pro-p group, or simply a uniform
pro-p group for short. This concept and terminology is motivated by the following
two results.

Theorem 7.1 (Structure of finitely generated powerful pro-p groups). Let G be
a finitely generated powerful pro-p group. Then the elements of finite order in G
form a characteristic subgroup T of G. Moreover, T is a powerful finite p-group
and G/T is a uniform pro-p group. In particular, G is virtually uniform.

Proposition 7.2 (Properties of uniform pro-p groups). Let G be a finitely gener-
ated powerful pro-p group. Then the following are equivalent:

(1) G is uniform;
(2) for every i ∈ N the map x 7→ xp induces an isomorphism from Pi(G)/Pi+1(G)

onto Pi+1(G)/Pi+2(G);
(3) d(H) = d(G) for every powerful open subgroup H of G.

Let G be a pro-p group of finite rank. Then G contains an open uniform
subgroup U . According to Proposition 7.2, the minimal number of generators
for U does not depend on the particular choice of U and thus provides a useful
invariant of G: the dimension of G is defined as dim(G) := d(U). One can show
that

dim(G) = dim(N) + dim(G/N) for N Ec G.

The algebraically defined dimension of G is, in fact, the same as the dimension of
G regarded as a p-adic Lie group. A first indication that G carries the structure
of a p-adic analytic manifold is given by

Proposition 7.3 (Multiplicative coordinate systems). Let U be a uniform pro-p
group and d = d(U). Then every minimal generating set {a1, . . . , ad} for U yields
a homeomorphism

Zd
p → U, (λ1, . . . , λd) 7→ aλ1

1 · · · a
λd
d .

This proposition can easily be proved from Proposition 7.2 and Corollary 5.8.
The algebraic properties of the multiplicative coordinate systems are, however,
not so good. We therefore set out to describe uniform pro-p groups in terms of
more useful coordinate systems.

7.2. Associated additive structure. Let G be a uniform pro-p group of di-
mension d, and write Gn := Pn(G) = Gpn−1

for the terms of the lower p-series
of G. Our aim is to define on G the structure of an abelian group isomorphic to
Zd

p. The new addition is to be defined canonically in terms of the original group
multiplication and such that the two compositions agree on all abelian subgroups
of G.

We take our inspiration from the formal identity

exp(X + Y ) = lim
n→∞

(exp(X/n) exp(Y/n))n

which holds in the completed free associative algebra Q〈〈X, Y 〉〉 and can be traced
back to the beginnings of Lie theory. Proposition 7.2 can be used to show that
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every element x ∈ Gn+1 admits a unique pnth root in G, which we shall denote by
xp−n

. Moreover, the groups Gn admit larger and larger abelian quotients Gn/G2n

as n→∞. These crucial observations allow us to define the sum of x, y ∈ G as

x + y := lim
n→∞

(xpn

ypn

)p−n

.

Essentially, we superimpose the groups Gn, by mapping them onto the reference
set G, and notice that their composition maps become more and more alike as
n→∞. Careful, but elementary considerations lead to

Theorem 7.4 (Associated additive structure). Let G be a uniform pro-p group
of dimension d, and let {a1, . . . , ad} be a minimal generating set for G. Then the
following hold:

(1) G with the operation + constitutes a free Zp-module on the basis {a1, . . . , ad};
(2) the operation + agrees with the original multiplication on all abelian sub-

groups of G;
(3) the terms of the lower p-series with respect to + are the same as the ones

for the original multiplication.

In particular this implies:

◦ the neutral element of G with respect to + equals the multiplicative identity
element 1;
◦ inverses with respect to + are the same as multiplicative inverses;
◦ p-adic exponentiation translates into scalar multiplication, i.e. xλ = λx for

all x ∈ G and λ ∈ Zp.

A particularly useful consequence of the theorem is

Corollary 7.5. Let G be a uniform pro-p group of dimension d. Then the action
of Aut(G) on G is Zp-linear with respect to the Zp-module structure on (G, +).
Moreover, Aut(G) embeds into GLd(Zp) as a closed subgroup.

The corollary implies in particular that the automorphism group of a pro-p group
of finite rank is virtually again a pro-p group of finite rank. Another immediate
consequence is that every pro-p group G of finite rank which contains an open
uniform subgroup U with Z(U) = 1 is linear over Zp. In fact, this is a special
instance of Lazard’s characterisation of p-adic analytic groups as linear groups
over Zp.

7.3. Associated Lie structure. Let G be a uniform pro-p group, and write
Gn := Pn(G) = Gpn−1

for the terms of the lower p-series of G. Since all free Zp-
modules of a given dimension are isomorphic, the procedure of passing from the
uniform pro-p group G to the associated Zp-module (G, +) inevitably involves a
certain loss of information. More information can be saved by defining yet another
operation, namely a Lie bracket. The new operation is to be defined canonically
in terms of group commutators.

Again, we take our inspiration from a formal identity, namely

exp(XY − Y X) = lim
n→∞

(
exp(X/n)−1 exp(Y/n)−1 exp(X/n) exp(Y/n)

)n2
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which holds in the completed free associative algebra Q〈〈X, Y 〉〉 and is intimately
linked with Lie theory. Accordingly, we define the Lie bracket of x, y ∈ G as

[x, y]Lie := lim
n→∞

[xpn

, ypn

]p
−2n

.

The individual terms make sense as [Gn, Gn] ⊆ G2n, but, of course, one needs to
check that the sequence converges. Careful, but elementary considerations lead to

Theorem 7.6 (Associated Lie structure). Let G be a uniform pro-p group. With
the operation [·, ·]Lie the Zp-module (G, +) becomes a Zp-Lie lattice.

In the following we denote the Zp-Lie lattice associated to G by L(G). The
next proposition assures us that the assignment of a Lie lattice to a uniform pro-p
group is well behaved with respect to the passage to subgroups or quotients.

Proposition 7.7. Let G be a uniform pro-p group. Let H ≤c G be a uniform
subgroup, and let N Ec G such that G/N is uniform. Then N is uniform and

(1) L(H) constitutes a Lie sublattice of L(G);
(2) L(N) constitutes a Lie ideal of L(G), the sets G/N and L(G)/L(N) are

equal and the natural epimorphism G → G/N of groups induces an epi-
morphism L(G)→ L(G/N) of Zp-Lie lattices with kernel L(N).

Unlike the Zp-module (G, +), the Zp-Lie lattice L(G) actually captures all the
information in the uniform pro-p group G. Indeed, our next task is to describe
how the group multiplication can be recovered from the Lie bracket.

7.4. The Hausdorff Formula. As mentioned in Section 2.4, the Hausdorff For-
mula gives an expression for the formal power series

Φ(X,Y ) := log(exp(X) · exp(Y )) ∈ Q〈〈X, Y 〉〉
in non-commuting indeterminates X, Y . In order to state the precise formula, we
first note that the associative algebra Q〈〈X,Y 〉〉 admits in [A, B] := AB − BA a
natural Lie bracket. Expressing exp and log as power series, one can effectively
eliminate the associative multiplication by a careful analysis and express Φ(X,Y )
completely in terms of Lie commutators: Φ(X, Y ) =

∑∞
n=1 un(X, Y ) is the infinite

sum of homogeneous terms un(X, Y ) where

un(X, Y ) =
n∑

m=1

∑
ai,bi≥0 s.t.
ai+bi>0,∑
(ai+bi)=n

(−1)m−1

mn · a1!b1! · · · am!bm!
[a1X,b1 Y, . . . ,am X,bm Y ]

with [a1X,b1 Y, . . . ,am X,bm Y ] = [X, . . . , X︸ ︷︷ ︸
a1

, Y, . . . , Y︸ ︷︷ ︸
b1

, . . . , X, . . . , X︸ ︷︷ ︸
am

, Y, . . . , Y︸ ︷︷ ︸
bm

] and

all commutators being left-normed. A computation of the first three homogeneous
terms ui(X, Y ) shows that

Φ(X, Y ) = X + Y +
[X, Y ]

2
+

[X, Y, Y ]− [X, Y, X]

12
+ . . .

As it stands the Hausdorff Formula is an identity in formal power series. Let
us explain its meaning as such. Consider the completed free associative algebra
A := Q〈〈x1, . . . , xd〉〉 in d non-commuting indeterminates. Write M := (x1, . . . , xd)
for the maximal ideal of A. It is easily seen that the exponential map and the
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logarithm map set up mutually inverse bijections between the sets M and 1 + M .
For d = 1 they even provide isomorphisms between the additive group M and the
multiplicative group 1 + M . But for d > 2 the groups M and 1 + M are clearly
not isomorphic: M is abelian, whereas 1 + M is not. The situation can be saved
by equipping M with the commutator Lie bracket: the Hausdorff Formula shows
that the multiplicative group 1 + M can be described entirely in terms of the Lie
algebra M .

We want to use the Hausdorff Formula to recover a uniform pro-p group G from
the associated Zp-Lie lattice L(G). Naturally, this situation is more complicated.
For instance, the question of convergence has to be considered more seriously.

7.5. Applying the Hausdorff Formula. A Zp-Lie lattice L is powerful if p is
odd and [L, L] ⊆ pL, or if p = 2 and [L, L] ⊆ 4L. It is easily seen that the Lie
lattice L(G) associated to a uniform pro-p group is powerful. It is also worth
noting that for any Zp-Lie lattice L the sublattice pL (respectively 4L) is powerful
if p is odd (respectively p = 2).

Let L be a powerful Zp-Lie lattice and let x, y ∈ L. A suitable analysis of
the p-adic valuations of the rational coefficients which appear in the homogeneous
components un(X, Y ) of the Hausdorff Formula shows that un(x, y) ∈ L for all
n ∈ N. Moreover, the sequence un(x, y) → 0 as n → ∞. Consequently, the limit
Φ(x, y) :=

∑∞
n=1 un(x, y) exists in L. The formal properties of the logarithm and

exponential series imply

Theorem 7.8. If L is a powerful Zp-Lie lattice, then the Hausdorff Formula
induces a group structure on L, with multiplication given by xy = Φ(x, y). The
resulting group is a uniform pro-p group.

One can check that, if this construction is applied to the Lie lattice L(G) associ-
ated to a uniform pro-p group G, one recovers the original group. The assignment
G 7→ L(G) thus defines an equivalence between the category of uniform pro-p
groups and the category of powerful Zp-Lie lattices.

This equivalence in turn induces a functor from the category of pro-p groups of
finite rank (which is equal to the category of p-adic analytic pro-p groups) to the
category of finite dimensional Qp-Lie algebras, taking G to L(G) := Qp ⊗Zp L(U)
where U is any open uniform subgroup of G. Likewise the image under the functor
of a homomorphism between two pro-p groups of finite rank only depends on its
restriction to an open uniform subgroup.
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8. Fourth Lecture

8.1. The group GLd(Zp) -- an example. Let d ∈ N. In order to illustrate the
abstract concepts introduced in Section 7 we discuss in some detail the group
GLd(Zp). Clearly, GLd(Zp) can be regarded as a topological group with respect
to the p-adic topology, i.e. with respect to the subspace topology induced from
the natural topology on the space Matd(Zp) of all d × d matrices over Zp. The
congruence subgroups

Gi := GLi
d(Zp) := {g ∈ GLd(Zp) | g ≡ 1 (mod pi)}, i ∈ N,

provide a natural filtration of GLd(Zp). For each i ∈ N the ith congruence sub-
group Gi is equal to the kernel of the natural projection GLd(Zp)→ GLd(Z/piZ)
and hence forms an open normal subgroup of GLd(Zp). Note that a matrix
x ∈ Matd(Zp) is invertible if and only if it is invertible modulo p. This yields yet
another description of the congruence subgroups: one has Gi = 1 + pi Matd(Zp)
for each i ∈ N. In particular, it follows that

|G0 : G1| = |GLd(Fp)| = (pd − 1)(pd − p) · · · (pd − pd−1),

|G1 : Gi| = pd2(i−1) for i ≥ 1.

Moreover, the groups Gi form a base of open neighbourhoods for the identity
matrix in Matd(Zp) and thus determine completely the topology on GLd(Zp): every
open neighbourhood of 1 in GLd(Zp) contains one of the open normal subgroups
Gi. It follows that GLd(Zp) is profinite and that G1 is a pro-p group. Put ε := 0
if p is odd, ε := 1 if p = 2; and set G := G1+ε.

Proposition 8.1. The group G = GL1+ε
d (Zp) is a uniform pro-p group and

dim(G) = rk(G) = d(G) = d2. Moreover, the lower p-series of G coincides with
the natural congruence filtration, i.e. Pi(G) = Gi+ε = GLi+ε

d (Zp) for all i ∈ N.

Sketch of proof for p > 2. As p is odd, we have G = G1. An easy computation
shows that every quotient Gi/Gi+1 of successive terms of the congruence filtration
Gi, i ∈ N, constitutes an elementary p-group of rank d2 which is central in G/Gi+1.
Thus Pi(G) ⊆ Gi for all i ∈ N. Below we show that G2 = {xp | x ∈ G}. This
implies that P2(G) = G2 = Gp, hence G is powerful. Next we conclude from
Proposition 5.7 that Pi(G)/Pi+1(G) is an elementary p-group of rank at most d2

for every i ≥ 2. In view of the inclusions Pi(G) ⊆ Gi, it follows that Pi(G) = Gi

for all i ∈ N and that G is uniform of dimension dim(G) = d2, as wanted.
It remains to prove that every element of G2 is a pth power of an element of G.

In other words, given A ∈ Matd(Zp) we are to solve

(1 + pX)p = 1 + p2A with X ∈ Matd(Zp).

We construct a solution X by means of successive approximations Xi ∈ Matd(Zp)
modulo pi, i ∈ N, similarly as in Exercise 4.4. These approximations Xi will form
a convergent sequence whose limit X will be an exact solution. Some care has to
be taken, because matrix multiplication in general is not commutative. But we
will construct each Xi so that it commutes with the given matrix A.

Set X1 := X2 := X3 := A and note that (1 + pA)p ≡ 1 + p2A modulo p3. Now
let i ≥ 4 and suppose, inductively, that we have found a matrix Xi−1, commuting
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with A, such that (1 + pXi−1)
p ≡ 1 + p2A modulo pi−1. Then

(1 + pXi−1)
p = 1 + p2A + pi−1E for some E ∈ Matd(Zp).

Observe that E commutes with A and Xi−1. Put Xi := Xi−1 − pi−3E. Then Xi

commutes with A, and a short computation shows that, modulo pi,

(1 + pXi)
p = (1 + pXi−1 − pi−2E)p

≡ (1 + pXi−1)
p − p(1 + pXi−1)

p−1pi−2E

≡ 1 + p2A + pi−1E − pi−1E

≡ 1 + p2A.

�

According to Section 7, there is a natural Zp-Lie lattice L(G) associated to the
uniform pro-p group G. Consider the Zp-Lie lattice gld(Zp) of all d × d matrices
over Zp, subject to the commutator Lie bracket. Similarly as the group GLd(Zp),
the Lie lattice gld(Zp) admits a natural congruence filtration

glid(Zp) := {x ∈ gld(Zp) | x ≡ 0 (mod pi)} = pigld(Zp), i ∈ N.

Put g := gl1+ε
d (Zp). Clearly, g is a powerful Zp-Lie lattice.

Proposition 8.2. The Zp-Lie lattice L(G) associated to the uniform pro-p group
G = GL1+ε

d (Zp) is isomorphic to g = gl1+ε
d (Zp).

Sketch of proof for p > 2. The correspondence between G = GL1
d(Zp) and g =

gl1d(Zp) admits an explicit interpretation through the logarithm and the exponen-
tial map. For instance, one can check directly that the Lie bracket obtained in
the construction of L(G) is the same as the one of g, if one passes from one Lie
lattice to the other by means of the logartihm and the exponential map.

Concretely, one may proceed as follows. A natural Zp-basis for g is given by
the p-multiples of the d2 elementary matrices, i.e. by the matrices with one entry
equal to p and all remaining entries equal to 0. One can explicitly compute the
images of these basis elements in G under the exponential map. For any two basis
elements a, b ∈ g one can then verify that exp(ab − ba) is the same as the value
which results from the corresponding limit formula, with input x := exp(a) and
y := exp(b), provided in Section 7.3. �

8.2. Just-infinite pro-p groups. A profinite group is just-infinite, if it is infinite
but admits no proper infinite quotients. It is easily seen that every just-infinite
pro-p group is finitely generated and that every infinite finitely generated pro-p
group has a just-infinite homomorphic image; see Exercise 9.3. Just-infinite pro-p
groups play a similar role in the theory of pro-p groups as finite simple groups in
the theory of finite groups. Many of the better known just-infinite pro-p groups
are groups of Lie type, defined over Zp or over the pro-p ring Fp[[t]] of formal
power series with coefficients in Fp. In addition, there are several interesting
exceptional examples of just-infinite pro-p groups, such as the Nottingham group;
see Exercise 9.3. As yet no convincing proposal has been put forward for classifying
just-infinite pro-p groups. In fact, one can construct uncountably many pairwise
non-isomorphic just-infinite pro-p groups. So a first step would be to give a precise
and sensible meaning to the word ‘classification’ in the given context.
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Best understood among the just-infinite pro-p groups are the p-adic analytic
ones. Every soluble just-infinite pro-p group is virtually abelian and hence p-adic
analytic. Indeed, the soluble just-infinite pro-p groups are irreducible p-adic space
groups, and they can be investigated by the methods developed to study pro-p
groups of finite coclass. The non-soluble p-adic analytic just-infinite pro-p groups
can be realised as open subgroups of the groups GQp of Qp-rational points of
certain semisimple algebraic groups defined over the field Qp. It is this description
which makes them accessible in a rather explicit way.

Indeed, the non-soluble p-adic analytic just-infinite pro-p groups can naturally
be partitioned into commensurability classes, where two profinite groups are com-
mensurable if they have isomorphic open subgroups. One can then show that
within each commensurability class of non-soluble p-adic analytic just-infinite pro-
p groups there is (up to isomorphism) a unique maximal representative G which
has the property that every just-infinite pro-p group which is commensurable to
G embeds as an open subgroup into G.

The maximal group G which is commensurable to a given non-soluble p-adic
analytic just-infinite pro-p group H can be constructed as follows. To H one
associates via an open uniform subgroup U ≤o H the Qp-Lie algebra L(H) =
Qp ⊗Zp L(U). This Lie algebra turns out to be the direct sum of pe copies of a
simple Qp-Lie algebra for a suitable e ∈ N0, with e = 0 corresponding to the most
interesting case. The automorphism group of the Lie algebra L(H) can be regarded
as an algebraic group G defined over Qp. We remark that the classification of
simple Qp-Lie algebras and simple algebraic groups over Qp can be used to obtain
an overview of the groups that occur. Since H is non-soluble and just-infinite,
it acts faithfully on L(H) and thus embeds into the group GQp of Qp-rational
points. Being a pro-p group, H is contained in a Sylow pro-p subgroup G of
GQp . A suitable Sylow theorem implies that all Sylow pro-p subgroups of GQp

are conjugate. From this one shows that G is a maximal just-infinite pro-p group
within the commensurability class of H.

It can be shown that a non-soluble p-adic analytic just-infinite pro-p group is
never isomorphic to a proper subgroup of itself. In contrast to this, the known
just-infinite pro-p groups which are not p-adic analytic do admit proper subgroups
which are isomorphic to the original groups. This leads to the interesting

Problem. Suppose that G is a just-infinite pro-p group which is not isomorphic
to any of its proper closed subgroups H <c G. Does it follow that G is p-adic
analytic?

8.3. Potent filtrations and saturable pro-p groups. In his seminal paper
Groupes analytiques p-adiques, Lazard develops the theory of p-adic Lie groups
from a class of groups which he calls ‘groupes p-saturables’. These saturable pro-p
groups include uniform pro-p groups, but form a strictly larger class. From a group
theoretic perspective saturable pro-p groups are, however, not as comfortable to
work with as uniform pro-p groups. Intuitively, a pro-p group G is saturable if
we can associate to it a Zp-Lie lattice L(G) via the limit process described in
Section 7. Recently, González-Sánchez has developed a quite useful description of
saturable pro-p groups in terms of potent filtrations.
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Let G be a pro-p group, and let N be a closed normal subgroup of G. A potent
filtration of N in G is a descending series Ni, i ∈ N, of closed normal subgroups
of G such that (i) N1 = N , (ii)

⋂
{Ni | i ∈ N} = 1, (iii) [Ni, G] ⊆ Ni+1 and

[Ni,p−1 G] ⊆ Np
i+1 for all i ∈ N. We say that N is PF-embedded in G if there exists

a potent filtration of N in G. The group G is a PF-group, if G is PF-embedded
in itself.

To ease notation, group theoretic constructs within topological groups will from
now on be implicitly geared towards closed subgroups. For instance, if H, K
are closed subgroups of a topological group G we interpret [H, K] as the closed
subgroup generated by all commutators [h, k] with h ∈ H and k ∈ K.

Some basic properties of PF-embedded subgroups, which are listed in the next
Lemma, follow essentially from the Hall-Petrescu collection formula. This formula
states that for elements x, y of any group G and n ∈ N,

xnyn = (xy)nc
(n

2)
2 · · · c(

n
i)

i · · · cn
n−1cn for suitable ci ∈ γi(G), i ∈ {2, . . . , n}.

Lemma 8.3 (Properties of PF-embedded subgroups). Let G be a pro-p group,
and let N, M be PF-embedded subgroups of G. Then

(1) NM , Np and [N,k G] are PF-embedded in G for all k ∈ N;
(2) [Np, G] = [N, G]p;
(3) Np = {xp | x ∈ N};
(4) if G is torsion-free and xp ∈ Np, then x ∈ N ; moreover, if x, y ∈ N such

that xp = yp, then x = y.

González-Sánchez’ characterisation of saturable pro-p groups is

Theorem 8.4 (Saturable pro-p groups as PF-groups). Let G be a torsion-free
finitely generated pro-p group. Then G is saturable if and only if G – or equivalently
G/Φ(G)p – is a PF-group.

In particular, if γp(G) ⊆ Φ(G)p, then G is saturable.

It is not difficult to check that every uniform pro-p group G satisfies γp(G) ⊆
Φ(G)p. Hence uniform pro-p groups are saturable. In fact, if G is a torsion-free
finitely generated pro-p group satisfying γp(G) ⊆ Φ(G)p, then the lower p-series
of G provides a potent filtration; see Exercise 9.4.

8.4. Lie correspondence. One difficulty in working with uniform pro-p groups is
that the property of being powerful is not inherited by subgroups in any coherent
way; see Exercise 9.2. For instance, this causes problems, if one tries to set up a Lie
correspondence for subgroups of a uniform pro-p group. The situation improves
substantially if instead one works with saturable pro-p groups. Using Theorem 8.4,
González-Sánchez and Klopsch recently proved

Theorem 8.5. Every torsion-free p-adic analytic pro-p group of dimension less
than p is saturable. On the other hand there exists a torsion-free p-adic analytic
pro-p group of dimension p which is not saturable.

This allows one to study torsion-free p-adic analytic pro-p groups of dimension
less than p by means of Zp-Lie lattices, similarly as finite p-groups of nilpotency
class less than p can be investigated based on the Lazard correspondence. In
addition, González-Sánchez and Klopsch proved
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Proposition 8.6. Let G be a saturable pro-p group, and H ≤c G with dim(H) ≤ p.
Then H is saturable and hence corresponds to a Lie sublattice L(H) of L(G).

This proposition gives a conceptually satisfying approach to setting up a Lie
correspondence for subgroups of a saturable pro-p group. A similar correspondence
in the context of uniform pro-p groups was originally discovered and proved by
Ilani via ad-hoc type arguments.

Theorem 8.7 (Lie correspondence). Let G be a saturable pro-p group and let
L(G) be the associated saturable Zp-Lie lattice. Suppose that K, H ⊆c G are
closed subsets, and denote them by L(K), L(H) when regarded as subsets of L(G).

(1) Suppose that H is a subgroup of G and that dim〈x, y〉Grp ≤ p for all x, y ∈
H. Then L(H) is a Lie sublattice of L(G). Moreover, if K is a normal
subgroup of H, then L(K) is a Lie ideal of L(H).

(2) Suppose that L(H) is a Lie sublattice of L(G) and that dim〈x, y〉Lie ≤ p
for all x, y ∈ L(H). Then H is a subgroup of G. Moreover, if L(K) is a
Lie ideal of L(H), then K is a normal subgroup of H.

Theorem 8.7 has natural applications, for instance to the subject of subgroup
growth. Indeed, it forms the basis for studying the subgroup growth zeta functions
of p-adic analytic pro-p groups, such as GL1

d(Zp), via their associated Lie lattices.
It remains a challenging problem to describe the subgroup growth of the analytic
pro-p groups GL1

d(Zp), d ∈ N. At least for p ≥ d2 this problem ‘reduces’ to
understanding the sublattice growth of the Zp-Lie lattice gl1d(Zp).
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9. Third set of exercises

Exercise 9.1 (The special linear groups SLd(Zp)).
(a) Let d ∈ N and consider the topological group SLd(Zp). Show that this group
is virtually a pro-p group and display an open uniform subgroup, together with
its lower p-series. Realise the associated powerful Zp-Lie lattice explicitly as a Lie
sublattice of gld(Zp).
(b) Show that every open neighbourhood of 1 in SL2(Zp) contains an open sub-
group which is not powerful.

Exercise 9.2 (The quaternion group SL1(∆p)).
Suppose that p > 2, and let ρ ∈ {1, 2, . . . , p− 1} be a non-square modulo p. The
4-dimensional quaternion algebra over Qp is the associative algebra

Dp := Qp + Qpu + Qpv + Qpuv,

defined by the multiplication rules

u2 = ρ, v2 = p, uv = −vu.

The reduced norm and the reduced trace of an element x = α+βu+γv+δuv ∈ Dp

are given by

N(x) = α2 − ρβ2 − pγ2 + ρpδ2 and T(x) = 2α.

We write SL1(Dp) := {x ∈ Dp | N(x) = 1} and sl1(Dp) := {x ∈ Dp | T(x) = 0}.
(a) Show that Dp is a skew field. (Hint: Use the norm map.)
(b) Prove that SL1(Dp) is a compact topological group. (Hint: Consider x =
α + βu + γv + δuv ∈ Dp with N(x) = 1. Note that vp(α

2 − ρβ2) is even, while
vp(pγ

2 − ρpδ2) is odd. Conclude that α, β, γ, δ ∈ Zp. Now use the fact that the
norm map is continuous.)
Remark: The group SL2(Qp), in contrast, is clearly not compact.
(c) Show that sl1(Dp) is a 3-dimensional simple Qp-Lie algebra. Prove that sl1(Dp)
does not have any subalgebras of dimension 2. Conclude that sl1(Dp) is not iso-
morphic to the Lie algebra sl2(Qp).
Remark: There are (up to isomorphism) precisely two 3-dimensional simple Qp-Lie
algebras, namely sl1(Dp) and sl2(Qp).
(d) Note that ∆p := Zp + Zpu + Zpv + Zpuv constitutes a Zp-order of Dp, i.e.
a Zp-subalgebra whose Qp-span is equal to the entire algebra Dp. Show that ∆p

admits a unique maximal ideal p which is generated by v.
Remark: One can extend the p-adic valuation on Qp uniquely to a valuation on
the skew field Dp. The element v is a uniformiser for this valuation, i.e. it plays a
similar role as p does for the valuation on Qp.
(e) Write sl1(∆p) := sl1(Dp) ∩ ∆p and i := 1

2
u, j := 1

2
v, k := 1

2
uv. Note that

sl1(∆p) = Zpi+Zpj+Zpk and work out the commutators [i, j], [i,k], [j,k] in terms
of the new basis i, j,k.
(f) Note that sl21(∆p) := p sl1(∆p) is powerful. Convince yourself that the cor-
responding uniform pro-p group, which is defined via the Hausdorff Formula, is
equal to the group SL2

1(∆p) := SL1(Dp) ∩ (1 + p∆p).
Conclude that SL1(Dp) is a 3-dimensional just-infinite compact p-adic analytic
group which is not commensurable with SL2(Zp).
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Exercise 9.3 (Just-infinite pro-p groups).
(a) Prove that every just-infinite pro-p group is finitely generated.
Remark: I do not know whether there are just-infinite profinite groups which are
not finitely generated.
(b) Let G be a pro-p group of finite rank with open uniform subgroup U ≤o G.
Prove that, if the associated Qp-Lie algebra L(G) = Qp ⊗Zp L(U) is simple, then
G is just-infinite.
(c) Determine all abelian just-infinite pro-p groups. Show that every soluble just-
infinite pro-p group is virtually abelian. Construct a soluble just-infinite pro-p
group which is not abelian.
(d) Give an example of an infinite pro-p group which does not have any just-infinite
quotients. (Hint: Your group cannot be finitely generated.)
In contrast, show that every infinite finitely generated pro-p group G admits a
just-infinite quotient. (Hint: Consider an ascending chain N1 ⊆ N2 ⊆ . . . ⊆ G of
closed normal subgroups of G such that G/Ni is infinite for all i ∈ N, and assume
for a contradiction that M := cl(

⋃
{Ni | i ∈ N}) is open in G. Conclude that M

is finitely generated and derive a contradiction. Now apply Zorn’s Lemma.)
(e) Consider the profinite group G :=

∏
p Cp, where the product extends over all

primes p. Prove that G is finitely generated, but does not admit any just-infinite
quotient.
(f) Suppose that p > 2. Prove that the Nottingham group, introduced in Exer-
cise 4.3, is hereditarily just-infinite, i.e. that every open subgroup of the Notting-
ham group is just-infinite.

Exercise 9.4 (Saturable pro-p groups).
(a) Prove that every uniform pro-p group G satisfies γp(G) ⊆ Φ(G)p. Go on to
show that, if G is a torsion-free finitely generated pro-p group satisfying γp(G) ⊆
Φ(G)p, then the lower p-series of G provides a potent filtration. Conclude from
Theorem 8.4 that uniform pro-p groups are saturable.
(b) Let d ∈ N with d ≥ 3, and let G be a Sylow pro-p subgroup of GLd(Zp).
Show that G is not uniform. (Hint: Show that the image of G in GLd(Fp) is not
powerful.)
(c) Let d ∈ N, and let G be the Sylow pro-p subgroup of GLd(Zp). Determine
the lower central series of G for the specific case d = 3 and guess the general
pattern. (Hint: Take for G the group of matrices which are upper uni-triangular
modulo p, and consider the commutators of elementary matrices.) Conclude from
Theorem 8.4 that G is saturable for d ≤ p− 2.
(d) Construct a torsion-free p-adic analytic pro-p group of dimension p which is
not saturable. (Hint: Consider the semidirect product G := A n M of the abelian
groups A = 〈α〉 ∼= Zp and M = 〈x1, . . . , xp−1〉 ∼= Zp−1

p , defined by

xα
i =

{
xixi+1 if 1 ≤ i ≤ p− 2,

xp−1x
p
1 if i = p− 1.

Assume for a contradiction that G admits a potent filtration Gi, i ∈ N. Observe
that [M,p−1 G] = Mp and deduce that M ⊆ Gi for all i ∈ N in contradiction to⋂
{Gi | i ∈ N} = 1.)



ANALYTIC PRO-p GROUPS 39

Exercise 9.5 (Haar measure and random generation).
Every profinite group G is a compact topological group and as such it carries
a normalised Haar measure µ which is invariant under both left and right mul-
tiplication. The measure is normalised in the sense that µ(G) = 1. The Haar
measure µ can be evaluated on Borel subsets, in particular on all closed subsets of
G. Sometimes it is useful to think of µ as a probability measure on G. For k ∈ N
it induces a probability measure on the direct product G× . . .×G of k copies of
the group G; thus one can consider random k-tuples of elements in G.

(a) Let G be profinite group and H ≤c G. Determine the measure µ(H) in terms
of the index |G : H|.
(b) Let G be a finitely generated pro-p group, and put d := d(G). For k ∈ N
determine the probability that a random k-tuple of elements in G generates G.
(c) Let G be a pro-p group of finite rank so that, by Exercise 6.6, its subgroup
growth is polynomially bounded: denoting by σn the number of subgroups of index
pn in G, there exist c, α ∈ R such that σn ≤ cpnα for all n ∈ N0. Let k ∈ N with
k > α + 1. Deduce form the Borel-Cantelli Lemma that a random k-tuple of
elements in G generates with probability 1 an open subgroup of G. (Hint: The
Borel-Cantelli Lemma states that, if Xi ⊆c G, i ∈ N, is a family of closed subsets
of G such that

∑∞
i=1 µ(Xi) converges, then the Borel set

X =
⋂
{Yn | n ∈ N}, where Yn :=

⋃
{Xi | i ∈ N with i ≥ n},

has measure 0. In order to apply this in the given situation note that a k-tuple
fails to generate an open subgroup of G if and only if it is contained in infinitely
many open subgroups of G.)

Exercise 9.6 (Hausdorff dimension).
Let G be a pro-p group of finite rank, and write Gn := Gpn

for n ∈ N.

(a) Prove that

dim(G) = lim
n→∞

logp|G : Gn|
n

.

(Hint: Choose an open uniform subgroup U of G, and write Un := Upn
for n ∈ N.

Then Gc ⊆ U for some c ∈ N. Use the estimates |U : Un−c| ≤ |G : Gn| ≤ |G : Un|
for n ∈ N with n ≥ c.)
(b) Suppose that G is uniform and let H be a uniform subgroup of G. Prove that
the isolator isoG(H) := {g ∈ G | ∃n ∈ N : gn ∈ H} forms a uniform subgroup of
G with |isoG(H) : H| < ∞. (Hint: Work in the associated Zp-Lie lattice L(G)
and translate back and forth between the groups and the Lie lattices.)
(c) Let H ≤c G be a closed subgroup of G. Prove that

lim
n→∞

log|HGn : Gn|
log|G : Gn|

=
dim H

dim G
.

Remark: The limit on the left hand side is equal to the Hausdorff dimension of
H in G with respect to (the metric induced by) the filtration Gn, n ∈ N.
(Hint: Note that |HGn : Gn| = |H : H∩Gn| for all n ∈ N. Using similar arguments
as in part (a), reduce to the situation where both G and H are uniform. Convince
yourself that we can further assume that H is isolated in G, i.e. that isoG(H) = H.
Employing the associated Zp-Lie lattices, prove the claim in this situation.)
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10. Fifth Lecture

10.1. Representation growth and Kirillov’s orbit method. Let G be a profi-
nite group. For n ∈ N we denote by rn(G) the number of isomorphism classes of
continuous irreducible n-dimensional complex representations of G. For a general
profinite group, these numbers may very well be infinite, but there are interest-
ing situations where they are all finite. Indeed, if G is finitely generated, then
rn(G) < ∞ for all n ∈ N if and only if G is FAb7, i.e. if and only if H/[H, H] is
finite for every open subgroup H ≤o G. In this situation one takes an interest in
the arithmetic sequence rn(G), n ∈ N, which reflects the representation growth of
the profinite group G. A useful tool is the representation growth zeta function

ζ irr
G (s) :=

∑∞

n=1
rn(G)n−s,

which encodes the entire representation growth of G.
The derived series of G is the descending series Gi, i ∈ N0, of closed normal

subgroups, defined by G0 := G and Gi := [Gi−1, Gi−1] for i ≥ 1. It is easy to see
that, if G is a pro-p group, then G is FAb if and only if every term of its derived
series is open in G. In particular, any non-soluble just-infinite pro-p group is FAb.

Now suppose that G is p-adic analytic and consider the Qp-Lie algebra L(G) =
Qp ⊗Zp L(U) associated to G via an open uniform pro-p subgroup U . Then G
is FAb if and only if L(G) is perfect, i.e. if and only if L(G) = [L(G), L(G)].
This makes the representation growth of compact open subgroups of semisimple
p-adic Lie groups a natural field of study, and the so-called orbit method provides
a useful tool in this context.

Kirillov originally introduced the orbit method to study the unitary represen-
tations of nilpotent Lie groups in the 1960s, around the same time when Lazard
developed his theory of p-adic Lie groups. The method is based on the ‘experi-
mental’ fact that there exists a close connection between the unitary irreducible
representations of a Lie group and the orbits in its co-adjoint representation. In
the case of a connected, simply-connected nilpotent Lie group G with associated
Lie algebra g, one obtains a natural correspondence between equivalence classes of
irreducible unitary representations of G and G-orbits in the dual space of g. In the
1970s Howe showed that the orbit method can also be put to use in the context
of compact p-adic Lie groups. More recently, Jaikin-Zapirain and others extended
and applied the orbit method to solve problems in the subject of representation
growth.

10.2. The orbit method for saturable pro-p groups. Let G be a saturable
pro-p group and let g := L(G) denote the associated Zp-Lie lattice. Continuous
complex representations of G correspond to continuous complex characters. Thus
we want to arrive at a description of the set Irr(G) of continuous irreducible
complex characters of G.

In the following we will frequently use the fact that the underlying sets of
G and g are one and the same. We denote by Irr(g+) the set of continuous
irreducible characters of the additive group g+ := (g, +), which coincides with the
set Homcont

Z (g+, C∗) of continuous homomorphisms from g+ into the multiplicative
group C∗. Indeed, one should think of Irr(g+) as the dual space of g.

7FAb sounds fabulous and is short for ‘finite abelianisations’.
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The adjoint action of G on g which is given by conjugation, induces the so-
called co-adjoint action of G on Irr(g+): for ω ∈ Irr(g+) and g ∈ G the element
ωg ∈ Irr(g+) is defined by setting

ωg(x) := ω(xg−1

) for all x ∈ g.

Natural candidates for the irreducible characters of G arise in form of the class
functions

ΦΩ : G→ C, ΦΩ(x) := |Ω|−1/2
∑

ω∈Ω
ω(x),

where Ω runs through all orbits of the G-space Irr(g+). Indeed, one easily ver-
ifies that these functions form an orthonormal set. In fact, they give rise to an
orthonormal basis for the class functions of G modulo any open PF-embedded
subgroup N .

In parallel we need to keep track of the degrees of the irreducible characters
of G. For this purpose we introduce the notion of a radical. To ω ∈ Irr(g+) we
associate the bi-additive and skew-symmetric map

bω : g× g→ C∗, bω(x, y) := ω([x, y]).

The radical of this map bω is

Rad(ω) := Rad(bω) = {x ∈ g | ∀y ∈ g : bω(x, y) = 1}.

One can prove that the radical Rad(ω) associated to ω ∈ Irr(g+) is, in fact, a Lie
sublattice of g and coincides as a set with a saturable subgroup of G, namely with
the stabiliser StabG(ω) of ω in G.

Theorem 10.1 (Orbit method for saturable pro-p groups). Let G be a saturable
pro-p group with γp−2(G) ⊆ Gp. Then the continuous irreducible complex charac-
ters of G are parameterised by the orbits of the co-adjoint action of G on Irr(g+):

Irr(G) = {ΦΩ | Ω an orbit of the G-space Irr(g+)}.

Moreover, if Ω is the G-orbit of ω ∈ Irr(g+), then the degree of the corresponding
irreducible character ΦΩ is equal to |g : Rad(ω)|1/2.

We remark that the theorem applies in particular to uniform pro-p groups, if
p ≥ 5, and that similar conclusions hold true for uniform pro-2 and pro-3 groups.

Corollary 10.2. Let G be a saturable pro-p group, which satisfies γp−2(G) ⊆ Gp

and which is FAb. Then

ζ irr
G (s) =

∑
ω∈Irr(g+)

|g : Rad(ω)|−(s+2)/2.

Proof. Based on the theorem, this is now an easy computation. Observe that the
dimension of the representation corresponding to a continuous complex character
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χ of G is equal to χ(1). Hence we have

ζ irr
G (s) =

∑
χ∈Irr(G)

χ(1)−s

=
∑

ω∈Irr(g+)

Ω:=ωG

|Ω|−1ΦΩ(1)−s

=
∑

ω∈Irr(g+)

|G : StabG(ω)|−1|g : Rad(ω)|−s/2

=
∑

ω∈Irr(g+)

|g : Rad(ω)|−1−s/2.

�

10.3. An application of the orbit method. Based upon Corollary 10.2 Jaikin-
Zapirain has shown that, for odd primes p, the representation growth zeta function
ζ irr
G (s) :=

∑∞
n=1 rn(G)n−s of a FAb p-adic analytic pro-p group G is in fact a ratio-

nal function in p−s. For p = 2 the same assertion holds if one further assumes that
G is uniform. It is a major challenge to find out more about these representation
growth zeta functions. Of particular interest are the zeta functions associated
to families of open pro-p subgroups of semisimple p-adic Lie groups, such as the
principal congruence subgroups of the special linear groups SLn(Zp).

Regarding the existence of functional equations Voll and Klopsch have recently
proved a positive result in a global setting. For this they consider families of p-adic
Lie groups whose associated Lie algebras share a common Z-Lie sublattice.

Denote by P the set of all primes. Let L be a Lie lattice over Z, and for p ∈ P
let Lp := L⊗Z Zp denote the localisation of L at p. Then for all p ∈ P and k ∈ N,
with k ≥ 2 is p = 2, the Zp-Lie lattice pkLp is powerful and thus corresponds to a
uniform pro-p group which we denote by Gp,k.

Theorem 10.3. Let L be a Lie lattice over Z such that Q⊗Z L is a perfect Q-Lie
algebra of dimension d. For p ∈ P consider the family of FAb uniform pro-p groups
Gp,k corresponding to the family of powerful Zp-Lie lattices pkLp, where k ∈ N,
with k ≥ 2 if p = 2.

Then for almost all p ∈ P the representation growth zeta functions associated to
the groups Gp,k, k as above, satisfy the functional equations

ζ irr
Gp,k

(s)|p→p−1 = p(1−2k)dζ irr
Gp,k

(s).

These functional equations are to be interpreted as follows. Consider Gp,k for
p ∈ P and k ∈ N as above. The zeta function ζ irr

Gp,k
(s) is a rational function in

p−s whose coefficients can be expressed as polynomials in p and in the numbers
ν(V ) of Fp-points of certain smooth projective Fp-defined varieties V . The oper-
ation p → p−1 on such a number ν(V ) is performed by inverting the Frobenius
eigenvalues associated to V : the alternating sum of these complex numbers equals
ν(V ) in accordance with the Weil conjectures. In the simplest case the Frobenius
eigenvalues are just powers of p, in agreement with our notation.

The proof of Theorem 10.3 is built on two main ideas. The first ingredient is
the parameterisation of the irreducible characters of a FAb uniform pro-p group
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G in terms of the orbits of the co-adjoint action of G. In a second step one takes
advantage of the fact that the problem of counting co-adjoint orbits can be treated
within the framework of generalised Igusa local zeta functions.

– The End –
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