Übungen zur Differentialgeometrie (Winter 2023/24) 6. Übungsblatt (14.11.2023)

Abgabe der Lösungen nächsten Dienstag, 21.11.2023, bis 10:30 in der Vorlesung.

Übung 6.1. Zeigen Sie, dass $G := \mathbf{R}^{\times} \times \mathbf{R}$ mit der Verknüpfung

$$(a,b) \cdot (a',b') := (aa',b+ab')$$

eine Lie-Gruppe ist. Beweisen Sie, dass G als Gruppe zur Gruppe der affinen Transformationen der reellen Geraden (d.h. der Transformationen der Form $x \mapsto ax + b$) isomorph ist. Bestimmen Sie die linksinvarianten Vektorfelder und damit die (via ρ induzierte) Lieklammer auf $T_eG = \mathbb{R}^2$. (10+5+20 Punkte)

Übung 6.2. Die symplektische Gruppe $\mathbf{Sp}(n)$ ist folgende Untergruppe von $\mathbf{U}(2n)$:

$$\mathbf{Sp}(n) := \bigg\{ \left(\frac{A}{-\overline{B}} \ \frac{B}{A} \right) \in \mathbf{U}(2n) \bigg| A, B \in \mathbf{C}^{n \times n} \bigg\}.$$

- a) Zeigen Sie, dass Sp(n) eine Lie-Gruppe ist.
- b) Bestimmen Sie $T_e\mathbf{Sp}(n) \subset T_e\mathbf{GL}_n(\mathbf{R}) = \mathbf{R}^{n \times n}$ als Teilmenge. Wie groß ist dim $\mathbf{Sp}(n)$?

Bem.: $\mathbf{Sp}(n)$ lässt sich auch als (links-) \mathbf{H} -lineare Isometriegruppe des \mathbf{H}^n auffassen. (15+15 Punkte)

Übung 6.3. Die Heisenberg-Gruppe $H \subset GL(3, \mathbf{R})$ besteht aus den oberen Dreiecksmatrizen mit Einsen auf der Diagonale.

- a) Berechnen Sie die Lie-Algebra \mathfrak{h} .
- b) Zeigen Sie, dass $\mathfrak{u}:=[\mathfrak{h},\mathfrak{h}]=\{[a,b]\,|\,a,b\in\mathfrak{h}\}$ eine echte Lie-Unteralgebra von \mathfrak{h} ist und dass

$$[[\mathfrak{h},\mathfrak{h}],\mathfrak{h}]=0.$$

c) Berechnen Sie $\exp X$ für $X \in \mathfrak{h}$ und folgern Sie, dass \exp ein Diffeomorphismus ist. (10+10+15 Punkte)

Sie finden die Aufgabenblätter unter

 $\verb|http://reh.math.uni-duesseldorf.de/\sim | koehler/Lehre/2023-24/Vorlesung.html| | lehre/2023-24/Vorlesung.html| | lehre/2023-$