Übungen zur Differentialgeometrie (Winter 2023/24) 13. Übungsblatt (16.1.2024)

Abgabe der Lösungen Dienstag, 23.1.2024, bis 10:30 in der Vorlesung.

Übung 13.1. Sei E ein Vektorbündel mit Metrik h. Ein Zusammenhang ∇ auf E hei β t metrisch, falls

$$\forall s_1, s_2 \in \Gamma(M, E), X \in \Gamma(M, TM) : X.(h(s_1, s_2)) = h(\nabla_X s_1, s_2) + h(s_1, \nabla_X s_2).$$

Zeigen Sie, dass E mindestens einen metrischen Zusammenhang trägt, indem Sie einen beliebigen Zusammenhang $\tilde{\nabla}$ wählen und $\nabla := \tilde{\nabla} + \frac{1}{2}h^{-1}\tilde{\nabla}h$ setzen (wobei $h^{-1}\nabla h \in \text{End } E$ durch $h(\cdot, (h^{-1}\tilde{\nabla}_X h)\cdot) := \tilde{\nabla}_X h$ für $X \in TM$ definiert ist).

Übung 13.2. Sei $\mathcal{L} \to M$ ein \mathbf{R} -Linienbündel mit einer Metrik h. Zeigen Sie, dass es auf \mathcal{L} einen eindeutig bestimmten metrischen Zusammenhang ∇ gibt. (Bem.: Das geht sehr elementar ohne Übung 13.1). (20 Punkte)

Übung 13.3. Sei \mathcal{L} ein C-Linienbündel über einer Mannigfaltigkeit M und ∇ ein (C-linearer) Zusammenhang auf \mathcal{L} .

- a) Zeigen Sie $\nabla^{\operatorname{End}(\mathcal{L})} = h^{-1} \circ d \circ h$ mit der kanonischen Identifikation $h : \operatorname{End}(\mathcal{L}) \stackrel{\cong}{\to} M \times \mathbf{C}, \sigma \otimes s \mapsto \sigma(s)$. Diesen Isomorphismus werden wir im Rest der Aufgabe nicht mehr hervorheben.
- b) Zeigen Sie, dass die Krümmung $\Omega \in \mathfrak{A}^2(M)$ von ∇ geschlossen ist.

(15+10 Punkte)

Übung 13.4. Zeigen Sie im Kontext von Übung 13.3 weiter:

- a) Sie $\widetilde{\nabla}$ ein weiterer Zusammenhang auf \mathcal{L} mit Krümmung $\widetilde{\Omega}$. Beweisen Sie, dass $\Omega \widetilde{\Omega}$ exakt ist. Somit induziert \mathcal{L} also kanonisch ein Element $c_1(\mathcal{L}) := \left[\frac{-1}{2\pi i}\Omega\right] \in H^2(M) \otimes_{\mathbf{R}} \mathbf{C}$, die erste Chern-Klasse von \mathcal{L} .
- b) Sei $\operatorname{Pic}(M)$ die Menge der Isomorphieklassen von \mathbf{C} -Linienbündeln auf M. Dann bildet $\operatorname{Pic}(M)$ mit \otimes als Produkt und der Dualisierung * als Inversenbildung eine abelsche Gruppe. Beweisen Sie, dass c_1 : $\operatorname{Pic}(M) \to H^2(M) \otimes_{\mathbf{R}} \mathbf{C}$ ein Gruppen-Homomorphismus ist.

Bem.: Aus derartigen charakteristischen Klassen kann man auch zahlwertige Invarianten gewinnen, z.B. den Grad deg $\mathcal{L} := \int_M c_1(\mathcal{L})^{\dim M/2} \in \mathbf{C}$ für geradedimensionales M. (15+15 Punkte)

Sie finden die Aufgabenblätter unter

http://reh.math.uni-duesseldorf.de/~koehler/Lehre/2023-24/Vorlesung.html